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Summary
Modern security systems nowadays are no longer limited to the basic, rule-based behavior that
characterized them for well over a decade. Born as single-device firewalls capable of analyzing network
traffic and making simple decisions based on source and destination IPs, in the last twenty years they
evolved into complex and powerful beasts. They are now capable of thoroughly inspecting packets at
hundreds of Gb/s, blocking threats, identifying patterns and providing an astounding level of protection
even at higher levels of the internet protocol suite.

In enterprise, being equipped with an up-to-date, resilient, and proactive system is key to providing
a complete protection to the whole internal network, the employees and all the equipment. Violations of
confidentiality, integrity or availability must be avoided at all costs, as they may come with disastrous
consequences such as a data breach or an irrecoverable information loss.

Often, the deployment of such a security system may prove to be hard, with legacy systems and
compatibility issues slowing down the process. This dissertation aims to address this issue by providing
a suitable methodology for the task. The methodology focuses on maintainability and modularity
while providing a reasonable level of protection and avoiding performance setbacks.

The state of the art is initially analyzed, with security components available on the market being
extensively studied. A data-driven, test-first approach is successively proposed, setting up a honeypot
network mirroring the services available in production. Inbound and outbound traffic is then monitored
and logged for an extended period. Such traffic is subsequently processed using dedicated software to
gather statistically significant data and used to write efficient protection rules for each type of service.
Finally, these rules are validated against an additional set of tests and finally deployed in production.

This approach was studied and adapted for Trentino Digitale’s network, within an internship that
lasted two months in early 2020. The company’s Security Operations Center (SOC) oversaw the project
and helped in the deployment of an ad-hoc testing network. A week’s worth of data was collected and
analyzed, with draft configurations being written down in the first phase of the work.

The COVID-19 pandemic in March 2020 brought the project to an abrupt interruption, initially
delaying it. The internship was later resumed in remote working. Due to a severe lack of time, the
deployment to production of the obtained configuration was ultimately halted. A different path was
meanwhile conceived, partly demonstrating the efficacy of the methodology, but the full results of the
work remain to be seen.

The dissertation is divided in four main chapters. Chapter 1 focuses on introducing fundamental
notions and summarizes the important components of a security system. Chapter 2 further presents
the state of the art for each of the components, additionally detailing each one’s strengths and
weaknesses. Chapter 3 presents a methodology for correctly configuring such components in an
enterprise environment. Chapter 4 explores the application of the aforementioned methodology with a
case study. Finally, the conclusions of the work are presented, outlining the results and suggesting
future work on the subject.
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1 Introduction
While Intrusion Prevention System (IPS) and Intrusion Detection System (IDS) technology has been
around for at least thirty years, the actual necessity of strengthening networks with more than just a
firewall only came up relatively recently. While in the early 90s traffic flowed unencrypted between hosts
and web servers had an insignificant market share, rendering classic firewalls sufficient for defeating
intrusion attempts, the following decades revolutionized the landscape. This forced both attackers and
defenders to upgrade their tactics. The market prevalence of IPS solutions finally started ramping
up in the mid-2000s, but only in the last few years it saw an integration with other network security
solutions [19].

In a landscape of countless vulnerabilities, threats and exploit opportunities, enterprises are often a
tasty treat for attackers, being usually targeted with the goal of seizing confidential data and ultimately
for economical purposes. Often having started as small companies, middle-sized enterprises may
inadvertently evolve into giant beasts with intricate networks, filled with legacy systems and outdated
software. Especially in Italy, slow bureaucracy and strict policies worsen the situation, render deep
interventions costly and time consuming, even more so in case of a successful breach to the network
itself.

As an example, the median time between a successful network intrusion and the subsequent
detection is more than two weeks [24], rendering proactive detection even more of a must. Even worse,
nowadays the possible attack surfaces are countless and increase at an incredible pace, with threats
incoming from both outside and inside networks. However, the literature agrees [19] [6] that the focus
should be the protection of an internal network’s fundamental security attributes1, and its preservation
from outside threats.

A modern enterprise must be therefore well equipped with a robust protection system, but also
should be agile enough to react quickly to landscape changes, adapting its configuration to new threats
without falling into cumbersome logistic black holes and mingled firewall policies. This dissertation
aims to suggest a methodology that ticks all boxes, with the goal of writing a maintainable, light, and
modular configuration for an enterprise network protection system.

1.1 Components
To provide a reasonable level of protection to a system and to supplement a firewall’s basic protection,
several network components have been commonly described in literature, with an IDS concept first
appearing in a paper dating back to 1986 [1]. Nowadays, technology has evolved and diversified, with
vendors offering various products specializing in in-depth protection of certain services or acting as an
“all-in-one” solution.

From an enterprise standpoint, “the availability of a broad hardware range [...], a detection engine
incorporating multiple technologies [...], IDS-like features to detect less critical threats [...] and
centralized management and alerting capabilities across multiple devices” [25] are features considered
critical for a security suite. Such features, especially in the last few years, have been included in a
multi-purpose device called Next-Generation Firewall (NGFW). In even more recent times vendors
have started to offer virtualized versions of NGFWs or single components, both as virtual machine files
and in the cloud. Specialized hardware appliances, however, remain best suited for bigger companies
with high-load networks and great amounts of traffic.

Digging deeper, we shall now analyze the single components that, from a software standpoint, will
comprise our protection suite and are considered mission critical for the execution of the methodology.
These are:

1Commonly called the “CIA Triad”, it refers to Confidentiality, Integrity, and Availability, three attributes of the
protected data at the core of information security [18]
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� Intrusion Prevention System (IPS): a network device able to continuously monitor activity
within a network, using patterns known as signatures or thoroughly inspecting the packet to
detect unauthorized entry attempts. In case of a suspected attack, the device reacts accordingly
by blocking the malevolent traffic and sending an alert [16];

� Web Application Firewall (WAF): a specialized device that augments the capabilities of a
regular firewall by providing a deeper analysis of inbound and outbound traffic from and to
a HTTP/HTTPS server, identifying advanced threats and malevolent content found in each
packet’s payload [17];

� Denial of Service protection (DoS protection): a traffic monitoring device that quantitatively
analyzes the amount of traffic flowing between multiple sources and destinations within a single
network interface, blocking or rate limiting when such traffic exceeds a specific threshold;

� Transport Secure Layer termination (TLS termination): often integrated as part of the
aforementioned components or within a NGFW, it acts as a forward proxy endpoint for network
connections secured with Transport Layer Security (TLS) such as HTTPS or SMTPS, terminating
the encrypted session and enabling full inspection from the IPS or the WAF.

For the purpose of this dissertation, we will consider each of the aforementioned network protection
features separately, since vendors may merge or split features, change naming schemes, and alter feature
availability. Chapter 2 provides additional information on these components, including an overview on
the current state of the art.

1.2 OSI stack
We conclude the introduction by recalling the conceptual model known as the Open Systems Intercon-
nections (OSI) stack.

The OSI stack is an abstract model whose goal is to standardize the communication functions of
network endpoints. This is obtained by partitioning the required components into various levels. Each
level hosts one or more protocols and works unaware of the logic running the levels above and below it.
In other words, Level N receives structured data from Level N + 1, implements its own logic, then
send the newly wrapped data to Layer N − 1. This mechanism allows the complete encapsulation of
each layer’s logic, allowing its alteration and replacement without issues on bordering layers.

In real-world applications, the OSI stack has been only used as a blueprint, with no 1:1 implementa-
tion being available. It has however served as the underlying foundation of the internet protocol suite,
commonly referred as the TCP/IP stack [29]. The TCP/IP stack features only 5 layers, with TCP/IP
Layers 1 to 4 roughly mapping to their OSI equivalent and TCP/IP Layer 5 containing features of
OSI Layers 5, 6 and 7. Nonetheless, this dissertation will stick to the OSI numbering usually used in
literature. Table 1.1 briefly summarizes the structure of the OSI stack.

The components previously introduced may cover one or more levels of the stack, especially with
enhanced market offerings whose feature set differs significantly from the standard one described in
literature. Most advanced IPSs nowadays offer both standard inspection of the network and transport
layers, and when coupled with a TLS termination system may additionally inspect the application layer
payload. WAFs, on the other hand, are specifically built for analyzing HTTP/HTTPS payload and
thus their scope is limited. Similarly, DoS protection systems usually maintain thresholds for Layer 3
and 4 traffic, as most Denial of Service attacks and aggressive port scans carry empty payloads. Finally,
TLS termination proxies ideally work at Layer 6, where content encryption was initially conceived to
be included, and typically work at TCP/IP Level 5 in real-world applications. Table 1.2 summarizes
the typical working levels for all four components.
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Level Name Description

7 Application Provides applications with a high-level interface for accessing
the communication environment. It includes protocols such as
HTTP, FTP, SMTP, VNC, SMB, and more.

6 Presentation Deals with the representation of transferred data, such as adapt-
ing a webpage to the aspect ratio of the endpoint device. Also
manages encoding and encryption. In the TCP/IP stack, it is
integrated in the application layer.

5 Session Maintains sessions between recipients and structures the data
exchange, enabling suspension, resumption and termination;
additionally, deals with error recovery from Level 4. In the
TCP/IP stack, it is integrated in the application layer.

4 Transport Masks errors in Level 3, eventually segmenting/de-segmenting
and reordering of packets. In TCP/IP, it includes protocols
such as TCP or UDP, and manages the ports in the system.

3 Network Provides the means of opening, maintaining and closing a con-
nection between two endpoints. Also manages routing and
congestion control. The IP protocol is tasked with these func-
tions.

2 Data Link Sets up the functional means for the transfer of data units
between Level 3 entities, and masks Level 1 malfunctions. Also
provides flow control. IEEE 802.11 WiFi and Ethernet are two
protocols belonging to this layer.

1 Physical Provides the physical means of establishing and closing a con-
nection between entities, by transferring single binary units
(usually bits). Additionally deals with encodings, connectors
and voltage levels.

Table 1.1: The OSI stack.

Level 7 6 5 4 3 2 1 Notes

IPS ✓ — — ✓ ✓ — — L7 only with a TLS termination proxy.
WAF ✓ — — — — — — —

DoS prot. — — — ✓ ✓ — — —
TLS term. — ✓ — — — — — Works at Level 5 of the TCP/IP stack.

Table 1.2: Standard layers of operativity for the security components.
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2 Related work
In this chapter, we provide an overview on the related work that is relevant to our proposal. Given the
huge amount of research in the field and the wide variety of options available on the market, the work
outlined in the following sections is not meant to be comprehensive.

2.1 Intrusion Prevention System
The first and foremost component of any network protection system is an Intrusion Prevention System
(IPS). An IPS is a network device that supplements a regular network firewall’s presence by inspecting
traffic and making decisions based on the content of flowing packets.

IPSs were born in the late 2000s as an evolution of IDSs, sharing the same working concepts
but differing on the response capabilities. An IDS would set off alerts, for example by sending them
to a Security and Event Information Manager (SIEM). In contrast, an IPS takes further steps to
neutralize the threat. Usually, either the packet is dropped, or the attacker is straight out prevented
from accessing the entire network for a set amount of time.

From a high-level standpoint, IPS devices are usually divided into two different types: host-based
and network-based [31]. The former is usually installed in an endpoint device and monitors only
outbound and inbound traffic from that particular machine, the latter works as a standalone node
and can be found as part of NGFWs and as an individual hardware appliance, being capable of
monitoring an entire network. For an enterprise, a network-based IPS is usually the preferred choice in
a cost-cutting and centralization perspective.

Within network-based IPSs, the literature usually further distinguishes two sub-categories of threat
detection [6]:

� Signature-based detection: the IPS detects threats by comparing the single packet contents
against a set of signatures, which match a known set of attack vectors.

� Anomaly-based detection: the IPS detects threats by analyzing the attack circumstances or
the content of the packet itself, triggering if an anomalous behavior is detected.

Both solutions present benefits and drawbacks. Signature-based IPSs usually have a lesser impact
on performance, although this is strictly dependent on the size of the database itself. Indeed, comparing
a single packet against thousands and thousands of signatures can prove both a waste of time of
resources. Moreover, signature-based detection is useless in case of zero-days threats1 and variations of
existing attacks that would fall outside of selected signatures. Nonetheless, signature-based detection
has become the norm in modern IPS, with vendors offering authoritative signature databases. These
databases are often updated by the hour once new threats are discovered.

On the other hand, anomaly-based detection may be worse performance-wise but usually addresses
the issue of zero-day attacks. Early anomaly-based IDS used statistical baselines for detecting incoming
threats, starting from the very first IDS concept in a 1986 paper [1]. Usually, the bandwidth, protocols,
flags and more would be compared for identifying potentially illegitimate traffic. Newer anomaly-based
IPSs have evolved, and when used together with a TLS termination proxy (section 2.4) are able to
semantically analyze the content of the packet. With this approach, potential malicious activity such
as buffer overflow attempts and malware injection are instantly detected. However, this may result in
an even greater performance impact.

1A zero-day vulnerability is a vulnerability known only by the attacker exploiting it, and for which no mitigation
solution exists on the market.
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2.2 Web Application Firewall
While Intrusion Prevention Systems offer a suitably large amount of protection to all sorts of services,
HTTP/HTTPS servers nowadays need special attention due to their ubiquity and intrinsic heterogeneity.
With hundreds of different combinations of operating systems and application servers, each one with its
own array of vulnerabilities, the risk of an unexpected intrusion is always behind the corner, especially
with badly designed websites, outdated platforms, and insufficient network protection. Web Application
Firewalls (WAFs) respond to this necessity by thoroughly examining all traffic directed and coming
from web servers.

In contrast to IPSs, WAFs are a relatively recent creation, being first conceived in the late 1990s
and early 2000s [2]. It was only a decade later that their usage became prevalent, coinciding with the
web services boom and the corresponding surge in attacks directed at them.

From a technical standpoint, WAFs were built from the start with the goal of inspecting network
traffic directly in Level 7. This is in contrast with a classic IPS’s operating mode, usually limited to
Levels 3 and 4. Each packet in transit within a network is therefore fully unpacked. If necessary, a TLS
termination component (section 2.4) provides decryption. Finally, the payload is thoroughly inspected.

At the inspection level, WAFs may either use a positive or negative security model. The former
defines a list of acceptable behavior, the latter rather defines what is not permitted. Usually, WAFs
employ a combination of the two, by checking traffic against both models [17]. A combination of
signature matching, semantic, and syntactic parsing is used to carry out this phase. Finally, WAFs can
permit, block, or quarantine traffic, in a manner similar to IPSs.

The types of attacks detected by WAFs usually varies greatly between vendors, and an attempt
at standardization was made in 2003 through the Open Web Application Security Project (OWASP)
Top 10 List [15]. The list is updated annually and provides an overview of the most popular threats
that WAFs must be able to detect and neutralize. Usually, attacks such as Cross-Site Scripting (XSS)
and SQL injection (SQLi) are featured on the list, although the amount of attack surfaces is typically
endless. Finally, WAFs sometimes include corollary detection capabilities, such as the detection of
unencrypted credit card numbers within the payload, or the scan of attachments sent in POST requests.

While immensely powerful, WAFs do have drawbacks. Firstly, an overly aggressive signature engine
may produce false positives, which may prove disastrous in case of traffic-heavy websites. Secondly,
WAFs increase complexity within the IT infrastructure, potentially adding unwanted latency as the
inspections increase. Finally, WAFs necessarily need to be sided with complementary components such
as an IPS or a DoS prevention system, being unable to detect basic breach attempts such as a port
scan or network-level attacks.

2.3 DoS prevention
A Denial of Service (DoS) attack is a type of cyber-attack where a network endpoint is flooded with
an unmanageable amount of empty, superfluous requests. This usually results in a system overload
and possibly a complete crash, disrupting legitimate requests and often requiring a full reboot. A
Distributed Denial of Service (DDoS) attack builds upon the same philosophy. An array or botnet
of infected network hosts, called zombies, are controlled remotely by an attacker. All zombies then
proceed to target the same host with requests, increasing exponentially the effectiveness of the attack.

Nowadays, several solutions have been devised to address such types of attacks. Common defense
mechanisms are divided in source-based, network-based and destination-based [33]. Source-based and
network-based defense mechanisms attempt to stop DoS attacks at the source and before it reaches the
target network. Within an enterprise, the focus therefore shifts on destination-based mechanisms. The
ultimate goal is to stop the attack as far as possible from the intended destination, to avoid network
congestions throughout the attack’s path as much as possible [12].

Many destination-based techniques have been described in literature. Some of them include history-
based IP filtering, where only packets belonging to a IP whitelist are allowed during an attack, and the
usage of a Management Information Base, where statistical traffic patterns are recorded and regularly
accessed to check whether a certain type of attack is ongoing [33]. While powerful, such a statistical
approach that may prove ineffective in case of large-scale attacks that end up depleting most resources
from the start.
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The most common mitigation approach remains the usage of network thresholds. Thresholds pose a
hard limit on the amount of inbound and outbound traffic within a network. When an appropriate
threshold is selected, using parameters such as the network and host capacity, the probability of DoS
attack is significantly reduced. While remarkably effective and performing, this method presents several
drawbacks. The first is that setting a fixed threshold may negatively impact legitimate traffic during
an attack. If a DDoS attack consumes 95% of the available bandwidth, the remaining 5% may prove
insufficient for the regular traffic trying to access the host. The second is that thresholds may need to
be continuously adjusted to cater to the changing capacities of the network and the hosts, possibly
wasting human resources tasked with the management of these systems.

No DoS protection mechanism is 100% perfect. In fact, the literature suggests that intervention
with network-based defense mechanism is far more effective in prevention of these attacks [33]. Either
case, implementing threshold-based mechanisms within an enterprise can prove valuable if configured
correctly.

Indeed, most modern NGFWs are nowadays enriched with threshold-based DoS prevention mecha-
nisms. This functionality may be either provided within an IPS in the form of dedicated signatures,
or as a standalone component. These components can inspect and catalogue traffic at Layer 3 (TCP
or UDP) and Layer 4, registering source and destination IPs. Refined rules can be therefore created,
encompassing generic rate limiting for inbound traffic to more elaborate thresholds for single services.

Finally, some high-end DoS protection devices also provide custom thresholds for single and multiple
TCP/UDP ports, enabling detection of port scans, SYN and RST packet floods. Aggressive ones are
usually detected, but stealthier ones (such as Nmap’s T1 and T2 modes) usually slip through and
require the usage of a SIEM or a log manager to detect the threat.

2.4 TLS termination
While IPSs and WAFs are critical to the protection of a network, their firepower would be useless
without a proper way of inspecting TLS-protected traffic. For example, an IPS inspecting an encrypted
packet would be barely able to assess the contents of the header, and a WAF would not even touch
the payload. Several approaches have emerged for TLS decryption, with many being described in
literature [21].

Perhaps the most common technique is the usage of a TLS termination proxy or reverse proxy. A
reverse proxy is an intermediary acting on behalf the backend server, serving requests from incoming
clients. When configured with a copy of the protected service’s TLS certificate, a reverse proxy allows
full TLS decryption of incoming traffic. This unencrypted traffic can be later directed towards the
internal network where other security components may be located.

While being a flexible tool, reverse proxies require IPSs or WAFs to be located after them, which
may be infeasible in certain network setups. To address this issue, standalone tools performing
decryption have emerged. Vendors such as Symantec and Gigamon provide dedicated appliances [21]
for full TLS decryption, which can be arbitrarily positioned within a network.

Finally, some organizations may even require encrypted traffic to flow through even the internal
network, further increasing security. A possible solution is the usage of NGFWs, whose vendors began
integrating TLS termination solutions within their offerings. Thus, a NGFW can decrypt incoming
traffic, direct it to other security components residing in the same device, then re-encrypt using the
same certificate and dispatch it to the network.

While powerful, the aforementioned technique adds a significant overhead and may disrupt applica-
tion flows which require a very low network latency. Additionally, NGFWs often offer options to dump
decrypted traffic to another interface for later storage and inspection. This may pose an immeasurable
privacy threat when used irresponsibly, for example as a means of data harvesting from customers [5].
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3 Methodology
This chapter focuses on the definition of a practical, high-level methodology that shall be valid for
defining the parameters of several network protection components as described in section 1.1.

The goal is not to start a new configuration from scratch, but rather to improve upon an existing
one within a deployed enterprise network. To carry out this refinement, a data and test-driven honeypot
approach is proposed. The configuration is iteratively updated in repeating steps, being thoroughly
validated it against both automated and human-led tests, until a satisfactory balance between security
and performance is found.

The strength of the methodology lies in its repeatability. The configuration is modular in nature,
being split from the start into smaller, logically separated pieces depending on the destination and the
protected service. Each piece can be then individually updated as the threat landscape evolves and the
enterprise requires additional protection. Even in case of drastic network or policy changes, which may
happen several times within the lifespan of an enterprise, the previous configuration can prove valuable
as a starting block for the new changes.

What is described in the following sections is platform-independent, as popular solutions by vendors
may differ by naming schemes, availability, IPS signature databases, and more. Moreover, the obtained
configuration will be only valid for protecting public-facing services from outside threats. Other types
of traffic patterns, such as intra-network traffic between subnets and outbound traffic rules, are not
covered and may require a different approach to the problem.

3.1 Preliminaries
This methodology defines at a high-level the steps required for carrying out a structured definition and
deployment of a network protection configuration. As an input, the methodology requires:

� An existing enterprise network of arbitrary dimensions, with communication carried out with
protocols of the TCP/IP stack;

� A Demilitarized Zone or equivalent subnet, positioned somewhere within the network, with NAT
or public IPs assigned allowing access from the outside;

� A set of network protection components matching the ones described in section 1.1;

� An existing configuration for the aforementioned device(s), either in plaintext form or in the
vendor’s proprietary format, such as a .bak backup file (optional).

The output will be an equivalent configuration file, which should be then ideally deployed in place
of the existing one.

For brevity, the methodology will assume that all the security components reside in a single physical
device additionally doubling as a “legacy” firewall with Level 3 filtering capabilities. A NGFW usually
ticks all of these boxes, although for many enterprises this may not be the case, especially for networks
with many appliances from different vendors. Connecting the devices in series and matching network
coverage is therefore a viable alternative.

A set of core assumptions are then defined, which must stay valid throughout all phases of the
methodology:

� Immutable network: we assume the deployment environment to be completely untouchable,
only having access to current network patterns and configurations (e.g. iptables) while being
unable to move or edit anything. This approach is common in enterprise, where networks are
often convoluted and filled with legacy systems. Therefore, careful work is required to make
significant modifications to the infrastructure.
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� Border firewall: in enterprise, multiple entry points to WANs may be common, with several
perimetric firewalls and multiple routes leading to DMZs and internal services. To ideally cover
100% of the inbound rules, we assume that the network protection device is positioned at the
border of the network, with access to all inbound traffic directed towards the services to be
protected;

� Balanced configuration: the obtained configuration should strike a compromise between
security and performance. Often, system administrators enable indiscriminately all the protection
features ignoring both the nature of the protected service and the potential performance impact,
adding false positives, excessive packet buffering and processing time added by inspections. This
may cause an increase in latency, a decrease in throughput, or worse downtimes and access issues
to servers. A top-down approach is therefore preferable, where rules and signatures offered by
the protection systems are carefully chosen and implemented step by step, while performance is
monitored and issues are identified as soon as possible. The other side of the spectrum must
be also avoided, as implementing default and basic protection rules is trivial and is usually
insufficient for detecting advanced threats.

� Compromised exterior: we assume that traffic incoming from anything other than destinations
defined in the firewall white list is insecure and may compromise the system. This is especially
true in the later phases, when testing machines that may have been incorrectly configured could
infect other parts of the network if not timely stopped.

We shall then distinguish three different phases of the process.

� Data collection phase (section 3.2): data about the current configuration and common threats
is gathered for each service, using already-available information such as past attack data and
previous configurations;

� Test phase (section 3.3): using a honeypot network, outsider threats are lured, captured and
their content analyzed. All data is collected and processed for each type of service;

� Parameter validation phase (section 3.4): the data obtained in the previous phase is used
for writing a configuration that is then tested against actual threats to validate its feasibility.
This phase can be repeated an arbitrary amount of times until a satisfactory result is reached.

3.2 Data collection phase
The first phase consists in the enumeration of the services that will be protected. Under the assumption
of an already established network, a good starting point can be the analysis of existing firewall policies,
in order to obtain a comprehensive list of destinations within the DMZ. Most NGFW provide the
option of tying the single firewall rule to one or more security policies: this option, if present, is ideal
in order to avoid duplicate entries and facilitate the insertion of the configuration.

For each firewall rule, we check the number of destinations. If one covers more than a service
(e.g. a multi-purpose server with HTTP and FTP services open, or a reverse proxy covering multiple
appliances), then all the services shall be considered as a single “congregate”, writing down all of
them within the same row; else, we just take into account the single service. The latter case is usually
optimal, easing the addition of ad-hoc signatures later without impacting performance or causing
issues.

For each service, we take note of the operating system, the protocol(s) and service version(s). We
also list past attacks that specifically targeted each service. Random port scans and attempts to
use widely known exploits (such as WannaCry) shall not be counted for the purpose; however, if a
particular service has been compromised in some way such as DoS or DDoS attacks, a data breach, or
a vulnerability exploit, then we take note of the incident.

Finally, we evaluate the amount of traffic that the service handles. The baseline shall be measured
in packets per second as an average over a large amount of time (possibly days).

Tables 3.1 and 3.2 the data that needs to be collected with random and non-exhaustive examples.
The Rule column refers to a hypothetic firewall table row to avoid overcrowding with data.
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Rule Protocols OS Packets/second

11 HTTP, HTTPS (Apache) Red Hat 8.2 300

20
FTP (vsftpd)
SMBv1, SMBv3

Windows Server 2012 R2 50

34 SMTP, SMTPS (Postfix) Ubuntu 18.04 LTS 20
50 HTTPS (nginx) Ubuntu 18.04 LTS 1400

Table 3.1: First part of example data gathered for the validation phase,
including protocols, OS and packets per second.

Rule Past attacks

11 -
20 Constant EternalBlue exploit attempts by botnets over the last 2 years.
34 -

50
DDoS attack in November 2018. 150000 packets per second at peak.
Buffer overflow (CVE-2019-7401)

Table 3.2: Second part of example data gathered for the validation phase,
featuring descriptions of past attacks.

3.3 Test phase
In this phase, we shall gather additional data in order to get a full overview of the threats each service
must be protected from, particularly if the initial data featured no past attacks and no particular
vulnerability.

To avoid disruptions and downtimes for the production servers, a dedicated environment will
need to be deployed to execute tests. First of all, a public IP bubble separated from the production
one should be identified and reserved for the scope. This maximizes the overall security, minimizing
unauthorized entry attempts in case of disasters and data breaches affecting the test machines.

Secondly, a set of fake machines mimicking the production servers shall be deployed within the
network. Even in medium sized networks, making an exact copy of existing infrastructure may prove
to be an impossible task. Fallback options can be then either the replication of a smaller subset of the
network, or the creation of a honeypot network.

A honeypot is a specially deployed machine that closely mimics the content of a real server, baiting
attackers with apparently legitimate content and inviting them to take over the system. Once broken
into, they are usually no more than empty shells, although some elaborate honeypot mechanisms
provide virtualization of real services with complete keylogging and monitoring of unaware attackers
trying to breach the fake system.

An array of honeypots can be therefore deployed within a single subnet, possibly diversifying and
customizing them in order to increase both similarity to existing infrastructure and attraction to
potential attackers. Each honeypot should be equipped with its own public (or NAT) IP within the
bubble, in order to be fully accessible from outside the enterprise network.

Between the newly created network and the public WAN, a full set of network protection components
should be deployed. While a clone of the production equipment would be ideal, usually deploying
lower-end versions should work fine as long as interoperability is kept and the feature set remains the
same. Using appliances from different vendors is not recommended due to the infeasible amount of
time that would be later required for porting over the configuration.

With everything set up, the network shall be exposed to the internet. Data should be then collected
for a statistically relevant1 amount of time by simply allowing it to be targeted by attackers. Important
data to be collected include, for each firewall rule:

� Median inbound packets per second; more in-depth data can be collected by differentiating
between TCP and UDP traffic or packet flags (e.g. RST, SYN);

1The amount of time for an experiment to be considered statistically relevant varies widely, with trial and error usually
being the best way to approach time. Approximate times may be from a couple days to several weeks.
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� Attack types, including the total amount of attempts and possibly the amount of successful
breaches;

� Geographic provenience of attacks.

While this approach is usually successful for most services, sometimes services may be ignored by
attackers if they are considered impossible to breach, while others may require a greater amount of
data that automated tests cannot provide in any way. Usually, HTTP and HTTPS services fall into
the latter category. In these cases, an additional round of ad-hoc tests conducted by human beings is
required to integrate the previously obtained data.

Such tests may include the deployment of DoS attacks, silent and aggressive port scans, XSS and
SQLi attacks, and more. Once a sufficient amount of data has been collected and processed, work must
focus on the parameter validation phase.

3.4 Parameter validation phase
The goal of the parameter validation phase is to merge the data obtained in the previous phase with the
current configuration, obtaining a set of parameters that may be applied to the production environment
with no disruption.

If a configuration file is available from the production environment, then it can be used as a starting
point. Else, work must be started from scratch using only data collected in the previous phase. For
each component, we write a draft configuration, using the following guidelines:

� IPS: we shall include signatures for past attacks listed in section 4.4 and for the most popular
attacks that were recorded in the test phase. Additionally, we include platform-specific signatures
to provide a basic layer of security for that particular service: for example, for rule 11 in table 3.1,
we add signatures for HTTP, HTTPS and Apache;

� WAF: usually a case by case approach works best, and the draft configuration can start from
basic XSS and SQLi protection. The configuration can be then refined using the data collected
beforehand. Additional levels of protection (e.g. other types of code injections, or sensitive data
exposure) can be added, or HTTP header inspection can be enabled.

� DoS protection: thresholds should be inserted so that, depending on the data, legitimate traffic is
allowed to go through while more aggressive port scans and DoS attempts are blocked. Usually,
a threshold 1.3 to 1.5 times the median packet per second value is sufficient, both for generic
thresholds and when more detailed data is available;

� TLS termination: if the service protected employs TLS-extended protocols such as SMTPS or
HTTPS, TLS termination must be turned on in order to inspect any encrypted packet.

This draft configuration shall then be applied to the honeypot firewall, and a smaller subset of
tests shall be run. These tests may include carrying out selected penetration tests for each service and
the reconnection of the honeypot to the WAN. While new information about incoming attacks can
prove valuable if collected, running more weeks’ worth of automated tests can prove ineffective, since
the goal of this phase is to test the effectiveness of the configuration rather than to collect data over a
long period of time.

During this phase, the protection capabilities and performance should be closely monitored.
TLS termination must be thoroughly verified, as attacks may slip through undetected in case of
misconfigurations. If the newly enabled functionality disrupts the honeypot, blocks traffic or generates
false positives, the issue must be identified and the configuration temporarily rolled back.

This final cycle may be repeated an arbitrary amount of times, until a satisfactory set of parameters
is obtained. In accordance with the core assumptions, the configuration should be robust enough
to withstand both common attacks and ad-hoc attacks that specifically targeted the service, while
being flexible to integrations and having zero to minimal impact on the overall performance. In
medio stat virtus: weak configurations barely different from default ones and exaggerated ones with
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indiscriminately enabled features should be avoided at all costs, as they would defeat the purpose of
this methodology.

Finally, the obtained configuration can be deployed to the production environment. This is a very
delicate process and disasters of any kind may arise during this phase. In the worst case, clashes with
existing policies and other firewall appliances may interfere with the traffic, causing downtimes and
server-side errors. It is therefore fundamental be very precautious, possibly by planning downtimes
and deploying little bits of the configuration at a time with regular backups. Each time the production
configuration is updated, tests should be immediately conducted in order to ensure the functioning of
the whole network. In case of failures, the configuration should be rolled back and returned to the test
environment for a more in-depth analysis.

While the aforementioned method works, it can be slow especially for very intricated networks
and long firewall rules. The deployment can be accelerated by avoiding downtimes and updating the
configuration on the fly, although the strategy may prove catastrophic and is not recommended for
large enterprises. Other mitigation strategies may include A-B testing, where the default network
path with the old configuration is temporarily sided with another one featuring the new configuration.
Load balancing can be then set up between the two paths, with constant testing and monitoring being
introduced to verify the correctness of operations.
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4 Case study
This chapter focuses on a case study implementing the methodology with the goal of verifying its
effectiveness. This experiment was conducted during an internship in partnership with Trentino Digitale
SpA. The whole project took place between February 2020 and April 2020 and lasted 250 hours.

Trentino Digitale is an enterprise formed in 2018 as a result of a merger, incorporating Informatica
Trentina SpA, a service provider and software house, with Trentino Network s.r.l., a telecommunications
company administering the public network of the Trentino region. Over time, it became apparent that
a radical rejuvenation and reorganization of the network was urgent.

Under strict scrutiny by the company’s Security Operations Center (SOC), the MISP project was
conceived just months before the merger and was a first step in this direction [13]. To further increase
the overall security and to empower the SOC by prioritizing proactivity over reactivity, the IPS and
WAF usage was to be bolstered. However, a structured approach was needed for the deployment of
these technologies.

4.1 Project overview

As a result of the merger, several DMZs from Informatica Trentina came under management by
Trentino Digitale. Being very heterogenous in terms of services provided, with various network paths
and intermediate firewalls of different vendors filtering out traffic, a structured strategy was needed in
order to increase network protection.

On the border of Trentino Digitale’s own Autonomous System (AS), a pair of perimetric NGFWs
was recently deployed, protecting the whole public administration network from outside threats. Their
under-utilization was however apparent, with the IPS and the WAF’s protection features only partially
enabled in very few cases.

The goal of this project was therefore a total restructuration of the security configuration, maximizing
the available protection for Trentino Digitale’s services while minimizing the impact on performance.
Modularity was also identified as a key aspect of the configuration, easing future interventions even
after the end of the internship.

Following the methodology explained in chapter 3, a honeypot network was set up, mimicking
selected service types using both open-source honeypot solutions and dedicated machines.

After over a week’s worth of data collection, a draft configuration for all security components was
written and then underwent through further testing. Popular penetration testing tools were used in
conjunction with automated scripts and exposition to outside threats to provide a reasonable level of
validation for the results.

With the project approaching its final phases, the COVID-19 pandemic forced a temporary
suspension of the internship and the deployment to production was halted. The remaining part of the
project was completed in remote working, although the final deployment had to be simulated due to a
shift in priorities within the company. Nonetheless the results obtained can be considered meaningful
for the purpose of this dissertation.

As a part of a non-disclosure agreement, networks, IP addresses, services and sensitive data
described in this chapter are either fictional or edited out and do not reflect reality.

4.2 Preparatory study

The first part of the case study consisted in the analysis of Trentino Digitale’s network, the identification
of the services to be protected, and the firewall solutions used within the enterprise.
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4.2.1 Network and services

The DMZ subject of the study had IPs located in the 172.1.0.0/16 subnet and was positioned after
a pair of load-balanced perimetric firewalls and an unspecified amount of network nodes. This DMZ
hosted both services offered to the internal network, whose traffic was not routed through the AS
border, and services offered to the WAN.

Figure 4.1 summarizes an example of a route from the WAN to a server positioned within the DMZ.

Figure 4.1: Example route from the WAN to a DMZ server.

Within the latter category, services ranged from simple Apache web servers, to server farms hosting
multiple websites under a single Virtual IP, to FTP and SMB servers. Some of them were positioned
behind an additional machine, usually a reverse proxy or a load balancer, that hid the true IP address
of the server; some others were actually virtualized and shared hardware with other services while
differing by their advertised IP address.

With strict policies in place, no modification (such as network configuration or routing) could be
made to any service at all. Work first focused on the identification and enumeration of services, then
shifted on the analysis of the current firewall setup.

4.2.2 Firewalls

Extensive work was put into the analysis of the firewall systems in use in Trentino Digitale, especially
with regards to the capabilities offered by the Fortinet platform. As stated before, Trentino Digitale’s
AS was protected with a pair of two high-end FortiGate firewall appliances, clustered in an Active-Active
configuration1. These firewalls were configured to monitor most network routes leading to the WAN,
although they additionally managed selected intra-network traffic within the AS.

From a software standpoint, the firewalls were running a recent version of FortiOS. The docu-
mentation provided by Fortinet was studied, analyzing the capabilities of the system. Upon further
inspection, the features needed for the case study were identified, matching them to the components
described in section 1.1:

� Intrusion prevention: the system allowed to create custom IPS sensors that may either include
an arbitrary amount of signatures, or “category filters” that would include groups of signatures
based on their applicability (for example for an Apache server, or a Linux system, or for HTTP
traffic and so on). Signatures would be automatically pulled from FortiGuard, Fortinet’s central
security database, and used a custom nomenclature system that will be used throughout the
chapter;

� Web Application Firewall: the system included a limited, predetermined set of “sensors”
(such as SQL Injection, Cross-Site Scripting, Trojans) along with checks regarding the semantics
of the single HTTP request (e.g. Illegal HTTP Version, invalid Payload Length) that could be
turned on and off within a single security profile;

� DoS protection: the system featured a dedicated panel for setting thresholds for each firewall
rule, both for TCP, UDP and SCTP packets and depending on source and destinations;

� SSL deep inspection: an implementation of a TLS termination proxy, it enabled inspection of
otherwise inaccessible TLS-encrypted traffic by other sensors such as IPS or WAF.

1An Active-Active configuration is a High Availability configuration that allows load balancing between two or more
network nodes sharing the same configuration.
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Another key feature was the possibility to switch between inspection in flow mode or in proxy mode.
The former analyzed packets as they came through, while the latter introduced buffering to enable
in-depth inspection and was strictly required by the WAF, along other security features. Downsides,
however, included the introduction of latency and possible time-out errors for slow or out-of-date
servers.

Figure 4.2: A screenshot from Fortinet’s IPS, showing a sensor employing
Server, DNS and Very High Risk signatures.

The production firewall configuration was thoroughly analyzed and copied down. While some
firewall rules already had enabled some IPS features, most others had not and the goal was to
standardize everything and re-apply rules in a consistent manner.

On the other hand, the configuration of the intermediate firewalls (provided by vendors different
from Fortinet) was unknown and could not be edited in any way; the only information available was
that no IPS or WAF had been enabled. Any modification within the perimetric firewalls could not
then alter their performance or their output, especially with TLS termination enabled.

4.3 Environment setup
Particular attention was given to the creation of a reliable honeypot DMZ, in order to get credible,
statistically relevant results in an environment that could both closely match the production one and
appear desirable to attackers.

4.3.1 Honeypot machines

The whole honeypot network, to ensure both a high degree of scalability and security, was completely
virtualized and special care was taken in choosing the correct service configuration.

An enterprise-grade server, used as a centralized virtualization environment, was built and put in
place with the following configuration:
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� CPU: 16 × Intel Xeon E5620 @ 2.40GHz

� RAM: 38 GB

� Storage: 4 × 200 GB, RAID 5

� OS: Proxmox VE 6.1

Work then focused on the generation of the Virtual Machines (VMs). Many open-source alternatives
were found and tested: while most were discarded, the Cowrie [4] and T-Pot [30] machines made
the cut. These two honeypots were supplemented by a vanilla installation of an Apache server and a
Splunk [27] server acting as a log recorder and data collection tool.

Selected code excerpts, outlining each machine’s configuration, can be found in appendix A.

Cowrie

Cowrie [4] is an open-source honeypot tool, using a customized Debian environment to emulate both
SSH and Telnet services. Attackers trying to access ports 21 and 23 are tricked into having successfully
penetrated the system. In reality, they are actually browsing a completely fake and virtualized Unix
system. This system can be fully customized, for example by changing access credentials and by
providing fake files to be downloaded within the system. Each login attempt, both failed and not, is
recorded along with the command history of each session.

The Cowrie machine was primarily used as a username-password sniffer tool, in order to collect
data about common credential attempts.

T-Pot

T-Pot [30] is another open-source honeypot tool. Using a custom Debian environment, it runs Docker
versions of other open-source honeypot tools in a single box along with an ELK stack for managing
collected data.

T-Pot was used primarily for hosting common vulnerable services such as SMBv1, MySQL and VNC,
and was therefore the most targeted machine during all testing phases.

Apache server

A simple Ubuntu Server 18.04 installation was used as a base for installing a LAMP stack running
fake versions of websites hosted in the real DMZ. The installation was further customized with an
installation of DVWA [8], a web application used tool for testing web-based vulnerabilities.

The machine was initially used as an HTTP-only server and was all but ignored in the first phase.
However, it was later upgraded and given a TLS certificate in the second phase.

Splunk

Finally, another fresh copy of Ubuntu Server 18.04 was used in conjunction with Splunk [27], a data
collector and aggregator, with powerful query tools integrated.

Splunk was both used as a syslog collector and as a query tool for data incoming from the other
honeypots, creating a centralized platform from which data could be obtained from.

4.3.2 Network configuration

The following step was to connect the virtualization environment to the WAN. A then-unused public
IP range (pictured blue, 123.45.67.88/29), completely separated from the enterprise network but
within the AS, was used as an entry point and was connected to an entry-level FortiGate 60E [9], to
be employed both as a perimetric firewall and as a traffic sniffer unit. The 60E, while bearing lower
bandwidths, was geared with the same software features as the production ones.

All the VMs installed in the Proxmox virtualizer were placed in a dedicated subnet (pictured gray,
192.168.100.0/24) and connected to the FortiGate.

18



Both the virtualizer and the FortiGate were then wired to the internal enterprise network (pictured
orange, 10.2.0.0/24), along with a PC used specifically for monitoring and running tests. This
enterprise network was only used for management and could not communicate with anything but the
firewall and the Proxmox management interface. To avoid resorting to the VNC interface provided by
the Proxmox web portal for managing the VMs, a Virtual Private Network (VPN) was set up on the
FortiGate, allowing access to the honeypot subnet.

Finally, basic firewall rules and NAT were set up, assigning public IPs to the two honeypot
machines and the Apache web server within their subnet range (initially 123.45.67.90, 123.45.67.91,
123.45.67.92) and allowing traffic to go through.

Figure 4.3 describes the resulting network with IP addresses for each machine installed.

Figure 4.3: The honeypot network.

The final step was to enable log reporting from both the firewall and the machines to the Splunk
one, finalizing the setup of the whole environment.

4.4 Data collection and first testing phase
The data collection phase lasted for a total of 158 hours and 45 minutes, and was divided into four
sub-phases:

1. Phase 1: the network was left exposed to the internet with no WAF protection and IPS used as
an Intrusion Detection System (IDS);
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2. Phase 2: basic DoS protection was inserted and the network was targeted with aggressive port
scans and Denial of Service attacks;

3. Phase 3: the data gathered in Phase 1 and 2 was used for deploying an initial IPS and WAF
profile and improving the DoS configuration precedingly added;

4. Phase 4: additional data gathered in Phase 3 was used for refining the configuration.

4.4.1 Quantitative analysis

Table 4.2 shows the amount of inbound traffic recorded during the four phases as a median of packets
per hour recorded during that phase. The data showed is a sum of all the incoming packets towards
all three WAN-exposed machines, collected from the FortiGate’s point of view. The duration of each
phase is shown in table 4.1.

Phase Phase 1 Phase 2 Phase 3 Phase 4

Duration 119:00 2:45 19:30 17:30

Table 4.1: Duration of each phase in hours.

Phase Phase 1 Phase 2 Phase 3 Phase 4

Teardown traffic 655 111473 965 359
Allowed traffic 7468 22183 2918 840
Blocked traffic 0 1460 78 364
Total traffic 8122 135117 3961 1564

Table 4.2: Traffic from each phase in packets/hour.

The diagrams in figure 4.4 and figure 4.5 show the correlation between phases, both in relative and
absolute form (with a logarithmic y-axis for better visualization). The colors represent three different
categories of traffic:

� Teardown traffic: this category comprises SYN, RST and empty packets, such as those sent during
a DoS or a port scan;

� Allowed traffic: legitimate traffic (that may or may not include a compromising payload);

� Blocked traffic: traffic flagged by the firewall as either malevolent (by the IPS or the WAF) or
outside the rate limit (by the DoS protection).

Phase 1 traffic is characterized by a heterogenous and relatively high amount of traffic, comprising
both legitimate and illegitimate attempts to access the network. The IPS sensors were enabled in
monitoring mode during this phase, collecting initial insights on common exploits and attacks.

Phase 2, on the other hand, features an extremely high and artificial peak of traffic originating
from hand-made Denial of Service attacks and Nmap port scans. The initial DoS protection profile,
deployed only for avoiding network disruptions, was extremely indulging (with thresholds set in the
thousands of packets per seconds) and struggled to limit the incoming attacks.

Starting from Phase 3, there was a sharp decline in the amount of traffic. With the IPS active
dropping malevolent packets and releasing no response at all, most attackers tended to give up
immediately after seeing their traffic cut short, while a small amount retried after several hours or
days; in both cases, the total amount of packets processed fell one to two order of magnitude.

Finally, Phase 4 traffic suffered an even sharper decline, mainly due to the addition of aggressive
IPS signatures for the T-Pot honeypot. In this phase, the amount of blocked traffic rose from 2% to
23%.
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Figure 4.4: Normalized plot of traffic during the data collection phases.
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Figure 4.5: Semi-log plot of traffic during the data collection phases.

4.4.2 Qualitative analysis

During each of the four phases, full data for all traffic was recorded with special regards to source
country, destination port and service. Extra flags were inserted by the 60E, highlighting packets that
were inspected by security features such as the IPS or the WAF. In this case, additional information
would be dumped to the Splunk machine, logging the type of the attack, the amount of retries, and
more.

Firstly, over 80% of the incoming traffic was flagged as originating from either botnets or automated
scripts retrying the same exploits over and over again. The list of the most common nations from
where attacks originated is shown in figure 4.6).

Vietnam, India and Russian Federation were among the most reported countries with automated
attacks. This comes as a no surprise, as these states are usually flagged as very dangerous by cyber
security reports [23]. One notable exception from the list is the United States, falling short of the
list with around 8000 attempts. Italy itself was even farther below, barely crossing the 5000 mark.
This data aligns with the current distribution of botnets over the world, being heavily skewed towards
“dangerous” countries [26].

Regarding targets, table 4.3 lists services (with the corresponding port) that were targeted the
most during all phases. The services listed all use at least one TCP port. Services using two or more
are marked with an asterisk ∗. Ports matching unknown services were aggregated into single entries,
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Figure 4.6: Pie chart of the most common attack sources with at least 10000
recorded attempts.

distinguishing them between well-known TCP ports, ephemeral TCP ports and UDP ports. The total
packets column refers to the sum of packets that were flagged by the IPS or the WAF as malevolent,
or by the DoS protection as over the threshold for that particular service.

Service Port Total packets

MSSQL 1433 434725
SMBv1 445 334411
Other TCP port (> 1024) - 155488
RDP 3911∗ 113656
VNC 5900∗ 27843
Telnet 23 22929
SSH 22 11798
Other TCP port (≤ 1023) - 6946
SMBv2, SMBv3 445 5376
HTTPS 443∗ 5207
HTTP 80∗ 3554
RTSP 7070 3125
SIP 5060∗ 2964
VDOLIVE 7000∗ 2335
Other UDP port - 2314
SMTP 25 1160

Table 4.3: Commonly targeted services with at least 1000 recorded attempts.

At the top of the table, the MSSQL and SMBv1 services stably occupy the first two positions, receiving
more than 67% of the total incoming traffic. This comes as no surprise, with the latter even being
acknowledged as extremely vulnerable from Microsoft itself [20]. Other popular targets include the
inherently unsafe Telnet and HTTP.

Surprisingly, the latter along with HTTPS were only modestly targeted in proportion to their
enormous market share. This can be attributed to the inherent automated nature of attacks received.
While botnets find it easy to overwhelm commonly vulnerable services, penetrating a well-protected web
service usually requires human intervention both before and during the attack due to their heterogeneity.
Indeed, most attack attempts directed at them were well-structured, not coming from botnets, and
were usually cut short once detected by the WAF. The content of this type of attacks usually varied
from simple SQL injection attempts to more tangled and elaborated XSS, often executed in batches.
However, the attack variety, especially when compared with popular web application vulnerability lists
such as the OWASP Top 10 [15], was found to be lacking.
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Finally, some services such as Cowrie’s SSH and T-Pot’s SMTP actually virtualized a whole fake
server and kept intruders entertained once breached, with their actions being logged. Inspecting the
events, however, yielded little information apart from than logs of automated scripts and a couple
commands before the attacker would quit the server. In contrast, others such as SMB.v1, RDP and VNC

were no more than empty shells once contacted. Nonetheless, they spent the whole test phase being
sieged just by keeping their TCP port open and advertising their presence. This confirms the theory
that botnets usually prefer to focus their efforts on the easiest target available, with most of them
being content just by gaining access to a system rather than diving deep into the machine.

Data was also collected on the incidence of common attacks. Table 4.4 presents popular attack
attempts during the first three phases. This further confirm evidence that favorite attack surfaces
remain those of insecure and out of date services, with attackers preferring to focus their efforts on
using the same exploits over and over again rather than diversifying their efforts.

Attack Attempts

Backdoor.DoublePulsar 255442
Android.ADB.Debug.Port.Remote.Access 25257
Telnet.Default.Credentials 16241
Mirai.Botnet 11190
SQL.Malicious.Statements 4318
Telnet.Remote.Root.Login 3769
Remote.CMD.Shell 600
MS.SQL.Server.Empty.Password 559
Sora.Botnet 522
UPnP.SSDP.M.Search.Anomaly 198
Telnet.Login.Brute.Force 182
MS.SMB.Server.SMB1.Trans2.Secondary.Handling.Code.Execution 164
MS.SMB.Server.Trans.Peeking.Data.Information.Disclosure 116

Table 4.4: Common attacks during the first three phases, with at least
100 recorded attempts.

The Backdoor.DoublePulsar attack precedingly described was by far the most popular, with 80%
of breach attempts making use of this exploit. DoublePulsar is backdoor exploit often used as a vehicle
for the WannaCry ransomware attack [32]). During these tests, a peculiarity was found: the exploit
was run exactly 3980 times by 45 different attackers and botnets. Other popular automated exploits
followed this pattern, such as the two MS.SMB.Server attacks. These two attacks exploit insufficient
input validation on the server-side to execute malicious code. Other common attacks included botnet
implanting attempts (e.g. Mirai.Botnet and Sora.Botnet) and credential brute forcing. The latter
included the usage of a wide array of default credentials for both the Telnet and SSH services.

In order to get more meaningful data, between Phase 3 and Phase 4 some ports and services were
shut down in order to better analyze the behavior of attackers. These include SMB.v1, MSSQL, RDP and
VNC: the honeypot service was shut down and the corresponding port blocked by the firewall. While
this is an optimal mitigation strategy, some network configurations requiring these services require a
different approach. A good alternative can be the addition of each service’s filter category to the IPS
configuration, as in figure 4.2. Either way, outright blocking the most common threats is indispensable.

With trivial vulnerabilities being blocked in Phase 4, the honeypots collected valuable data over
other lesser known attacks. Surprisingly, some attackers still dumbly retried popular attacks such as
DoublePulsar over and over, even with the relative TCP port blocked by the firewall.

It was assumed that the public IPs used during the tests were flagged by bots and were still
considered vulnerable. Thus, the tests were interrupted and retried several days later. This time, the
amount of attacks towards closed ports decreased by 67%, with attackers refocusing their efforts on
the services left open. Table 4.5 shows the most common attack attempts recorded in Phase 4.

The gathered data showed a wider variety of exploits being attempted. Almost all of them consisted
in remote code execution attempts, usually as a result of poor coding on the application’s side.
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Attack Attempts

VxWorks.WDB.Debug.Service.Version.Number.Scanner 1878
HTTP.URI.SQL.Injection 211
Netcore.Netis.Devices.Hardcoded.Password.Security.Bypass 137
PHP.Diescan 116
Joomla!.Core.Session.Remote.Code.Execution 105
vBulletin.Routestring.widgetConfig.Remote.Code.Execution 91
ThinkPHP.Controller.Parameter.Remote.Code.Execution 82
TCP.Split.Handshake 64
MS.Office.RTF.File.OLE.autolink.Code.Execution 60
Android.ADB.Debug.Port.Remote.Access 54
JAWS.DVR.CCTV.Shell.Unauthenticated.Command.Execution 41
NETGEAR.DGN1000.CGI.Unauthenticated.Remote.Code.Execution 36
ThinkPHP.Request.Method.Remote.Code.Execution 20
Java.Debug.Wire.Protocol.Insecure.Configuration 20
Goahead.Webserver.HTTP.Request.DOS 20

Table 4.5: Common attacks during the fourth phase, with at least 20
recorded attempts.

Unfortunately, most of them were pointless, due to the honeypots intentionally confusing attackers
by posing as other operating systems during port scans. Nonetheless, some attack signatures were
ultimately included in the configuration such as the VxWorks and ThinkPHP ones.

In conclusion, while the data gathered was useful, it was deemed somewhat generic and incomplete.
This is true especially for web services, which overall received little attention during all four phases.
Therefore, the data was integrated with manual, human-like attacks and a supplementary phase of
data collection.

4.5 Second testing phase
The data driven approach using honeypots was successful for most types of services, but the obtained
results were not considered satisfactory enough. Web services were lightly targeted, with the WAF
being triggered an insignificant number of times during all four phases. Moreover, the reliability of the
system with the newly created draft configuration was still to be tested.

To address these issues, a second round of tests was employed. Two different types of tests were
executed during this round, one for web services and one for the others.

4.5.1 Web service testing

The first testing phase yielded a statistically irrelevant data set for web services, with both HTTP and
HTTPS traffic being limited and attacks being extremely rare. The company’s DMZ, however, was
mostly composed of web servers essentially monopolizing the inbound traffic. The need for a more
detailed round of tests was therefore evident.

The web service threat landscape is vast, with a great fragmentation of operating systems, application
server solutions, programming language choices, and more. Launching an automated, large scale attack
different from a DoS on various web servers is thus typically unfruitful, needing intervention from
humans. From these considerations, an additional testing phase was planned, moving away from the
data-driven techniques previously used in favor of a more structured, human-led approach.

Firstly, the DMZ was completely cut off from the WAN, allowing traffic only from a dedicated test
machine’s IP address. Secondly, a draft configuration for web servers was deployed:

� IPS: selected web-related signatures were enabled, including basic prevention for SQLi, XSS and
directory traversal;

� WAF: initially enabled with both regular and extended protection for SQLi and XSS;
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� DoS protection: thresholds were set using data from the production servers, roughly setting them
to 1.3 times the daily peak traffic;

� TLS termination: enabled.

This configuration was deployed in protection of the Apache and T-Pot machines, with the Cowrie
one being shut down. The Apache machine was reconfigured with a TLS certificate and optional HTTP
to HTTPS redirection. Additionally, DVWA [8] was installed along with cloned versions of vulnerable,
legacy and HTTP-only websites gathered from the production DMZ. On the other hand, T-Pot was
set to manage only HTTP and HTTPS honeypots, which offered fake websites that changed every few
hours from a rotation pool.

Work then focused on the creation of the tests themselves. They were further divided between
reliability tests and integration tests.

Reliability tests consisted in the systematic execution of common vulnerability exploits using
state of the art penetration testing tools, in order to verify the effectiveness of the configuration and
eventually to check the necessity of modifications.

For testing SQL injection attacks, SQLMap [28] was initially used. SQLMap is an automated tool
that targets a specific web page with a myriad of common SQL injection attempts while notifying the
attacker straight from the command line in case of success. Further tests were conducted by hand,
using example strings available online in threat lists [15]. Cross-Site Scripting tests followed roughly
the same footprint, with ad-hoc JavaScript files being injected into the websites’ forms.

The DVWA [8] installation proved ultimately invaluable during these tests. Usually used as an
educational tool, it provides various tabs divided by attack (e.g. XSS, injection). In each tab, users
could test their attacks without fears of destroying a real setup and having to recreate the machine.

Other tools used during the reliability tests include Metasploit [22], Nmap [14] and HULK [10].
Metasploit is a penetration testing framework automating the exploitation of vulnerabilities, widely
used by security assessment teams. Nmap’s usage was fundamentally unchanged and was used in
conjunction with HULK for testing DoS protection thresholds.

The outcome of the tests was fairly positive, with the WAF reliably blocking all SQLi and XSS
attacks. On the other hand, directory traversal attacks were blocked by the dedicated IPS signatures.
Other types of attacks were instead blocked by more advanced WAF settings that were enabled step by
step, such as Generic Attacks and Bad Robot. Finally, more advanced functions providing header-level
inspection were tested but were not ultimately enabled because of excessive false positives being
reported even during regular usage of the websites.

Integration tests, on the other hand, were conducted with the intention of verifying compatibility
between each protected web service with the WAF, proxy mode of inspection, and TLS termination
enabled. All of these features were selectively enabled and disabled each time, yielding consistent
results but confirming previous fears that not all combinations would work correctly.

Indeed, enabling TLS termination and proxy mode inspection with any IPS configuration would
trigger a bug, completely cutting off all traffic regardless of the source and triggering RST responses
from the destination web server, no matter if they were legitimate or not. Due to lack of time, this bug
was not able to be further investigated, but it was confirmed that past attempts of enabling the same
configuration on the production firewall would yield the same result; moreover, the results would not
differ even by changing the single firewall rule or the protected HTTP/HTTPS service. Full results of
these integration tests are available at appendix B.

4.5.2 Non-web service testing

Tests for non-web services initially consisted in the change of honeypot IPs, with the attempt of
resetting previous vulnerability flags. Surprisingly, even after two weeks and a full shutdown of the
honeypots the botnets kept targeting the same IPs with the same common exploits. Secondly, a draft
configuration was deployed:

� IPS: a policy was deployed featuring protection for attacks rated 3 out of 5 in Fortinet’s
vulnerability scale, then integrated for each service with standard filters for each type (e.g.
Apache, HTTP, HTTPS, Linux) and key signatures collected in the first phase;

25



� WAF: disabled, as no web service was being tested;

� DoS protection: generic thresholds were set for TCP traffic and port scans, approximately 1.5
the amount of traffic recorded during the previous tests for each rule;

� TLS termination: disabled, as the totality of attacks encrypted with TLS was directed towards
web services.

With the configuration in place, the system was reconnected to the WAN for an additional
day. Unfortunately, no statistically significant data was obtained during this phase. However, the
implemented signatures successfully deflected most attacks with no impact on performance. The DoS
protection thresholds were tested with Nmap’s more aggressive scans, such as the T5 which poses no
limit on bandwidth usage [14]. This mode was used in conjunction with various types of scans offered
by the tool, including SYN and TCP connection scans. The amount of traffic generated by these scans
was more than enough to exceed the threshold and was rightfully blocked.

During most tests, the configuration received little change, with most edits falling into the removal
of certain feature-braking signatures and the tweaking of DoS thresholds. Once all tests were completed,
the configuration was deemed stable enough. It was therefore integrated with the web service one and
marked as finalized.

Finally, a guideline document was created. This document featured an excerpt of the methodology
used during the project and a summary of the all the results obtained. Instructions for restarting
the data collection and testing phases were included, to be put in use by Trentino Digitale for future
interventions on the network without restarting from scratch.

4.6 Deployment to production
Once the obtained configuration had been finalized and thoroughly tested, the remaining step was the
deployment on the production environment and monitor the results.

Due to the COVID-19 pandemic, the work was however unexpectedly shut down and suspended
for two weeks. During this time, the whole enterprise’s workforce adopted smart working strategies
for preventing the spread of the virus, and priorities shifted to tackling the emergency, such as the
large-scale deployment of VPNs to workers.

As a consequence, a work of such magnitude requiring both time and effort was impossible to be
carried over while remaining within the time constraints of the internship, so an alternative path was
followed.

4.6.1 DNS redirection

To cope with the inability of editing the production firewall’s configuration, a different strategy was
conceived: the FortiGate 60E, used for the previous tests, would be repositioned and some selected
DNS records would be updated to point to the 60E’s position. Figure 4.7 shows an example of the
procedure.

This configuration was applied to a few selected web servers, for the time strictly required for
testing the availability, the reliability and stability of the system. While useful as a buffer solution, it
could not in any way be compared to a full-scale deployment in the production firewall.

4.6.2 Deployment results

Once the DNS redirection had been set up, the configuration for HTTP and HTTPS servers, previously
written down from the test environment, was re-imported with little to no modification and applied.

Unfortunately, the small amount of time available made available for testing meant that no
statistically relevant analysis was able to be conducted; a test suite was therefore crafted following the
footprint of reliability tests previously ran in subsection 4.5.1. This suite was integrated with snippets
of past XSS and SQLi attacks, pulled from the company’s SIEM and event logs. Additionally, strings
vaguely resembling malevolent attacks were randomly inserted in the list to assess the capability of the
system of avoiding false positives. Code snippet 4.1 features selected examples of attack strings used in
the test suite, in the form of URL parameters.

26



Figure 4.7: An example of DNS redirection employed for the final tests.

# Sample directory traversal attack.

?tags=../../../../../../../etc/passwd%00&groups=admin

# Sample XSS attack using JavaScript’s alert function.

?tags=%22%3e%3cjavascript%3alert(String.fromCharCode(88%2c83%2c83))%3b%22%3e

&groups=admin

# Sample SQLi attack with URL encoding.

?SearchText=%20AND%205603%3DCONVERT%28INT%2C%28SELECT%20CHAR%28113%29%2BCHAR

%28122%29%2BCHAR%2898%29%2BCHAR%28113%29%2BCHAR%28113%29%2B%28SELECT%20%28CASE

[...]29%29%2BCHAR%28113%29%2B

#Sample SQLi attack with union statement.

?SearchText=%27%20UNION%20ALL%20SELECT%20NULL%2CNULL%2CNULL%2CNULL%2CNULL%2CNULL

%2CNULL%2CNULL%2CNULL%2CNULL%2CNULL--%20praG

Code 4.1: Sample attack strings used in the test suite

This test suite was deployed against the chosen web servers, with the 60E first employing the initial
configuration and then the new one.

Firstly, the new IPS rules resulted roughly in a 35% increase in detected attacks over the previous
configuration. The WAF successfully detected all relevant intrusion attempts when enabled, and no
false positives were detected. The DoS protection thresholds were not tested.

Secondly, the performance of the system remained relatively unaffected. Even with the supple-
mentary network routing required by the 60E’s presence, measurements in terms of both load and
latency showed little difference from before, with peaks of 200ms; it was estimated that by using the
production firewall the extra latency would be cut at least in half.

The results of the limited deployment can be considered fairly positive. However, a full-scale
deployment including all services in the DMZ and exposure to the WAN for several days remains
mandatory. This allows a complete assessment of the capabilities and the limits of the final configuration.

27



5 Conclusion
This dissertation analyzed the state of art for threat protection systems and outlined a high-level
methodology for deploying them in an enterprise environment while maximizing efficiency and security.
The case study proposed a possible application of the steps required for generating a consistent,
reliable and up-to-date solution for intricate situations, requiring little modification to the existing
infrastructure and configuration.

In the first chapter, an overview of the landscape of threat protection systems for the enterprise
was given. The terminology used throughout the dissertation was introduced, including details on the
OSI stack and on components considered key to providing greater protection to a network: an IPS, a
WAF, a DoS protection system and a TLS termination proxy.

The second chapter provided further information on such components, detailing their operation
and the state of the art. Their capabilities were put into perspective, with each one’s strengths and
weaknesses being outlined.

In the third chapter, a methodology was crafted employing honeypots to collect data about incoming
threats. The obtained data was subsequently employed for writing IPS and WAF policies. Built
around the concept of lightness, it aimed to strike a balance between performance and protection while
distinguishing between services. For each service type, a honeypot mimicking its likenesses was set up
and used as a bait for attackers; data about both successful and unsuccessful breach attempts was then
collected. Statistics and past attack data were used afterwards for defining a suitable configuration
for all four components. This configuration was then progressively refined and rendered apt for the
protection environment.

In the fourth chapter, a case study employing the aforementioned methodology was described. Born
as an internship collaboration with Trentino Digitale (a public administration enterprise running the
province’s network), the work focused on the definition of IPS, WAF and DoS protection rules, their
consequent validation and deployment on the company’s DMZ. Data from the previous, incomplete
configuration was mixed with valuable information incoming from a specially-crafted honeypot network,
which left open for almost a week and exposed to the WAN. More testing phases and ad-hoc attacks
followed suit, refining the obtained configuration even more.

However, the whole project was ultimately reshaped by the COVID-19 pandemic, which forced
a temporary suspension of the internship and rendered the remaining time insufficient for carrying
out the deployment to production suitably. An alternative approach was crafted, based on DNS
redirection. The production equipment was not touched and the configuration was validated from the
test environment itself. However, this approach was far from perfect and presented several weaknesses.

Firstly, the addition of an extra piece of hardware within the network clashed with the fundamental
principles initially outlined, namely the immutability of the network. Even if a more high-end firewall
appliance was to be installed in place of the testing 60E, spreading out rules throughout various
firewalls would worsen maintainability and introduce additional risks in the form of rule clashing.

Secondly, the configuration was thoroughly tested only on HTTP/HTTPS services, leaving out
highly vulnerable ones such as SMBv1 and more prevalent ones such as SSH. Fully testing all the
configurations obtained is key to avoid potential disasters during the final deployment: even if no
errors were detected during the testing phase, the production environment is usually several orders of
magnitude more chaotic and filled with threats, misuses and hundreds of potential points of failure.

The methodology described could be further explored by employing, for example, mirror images
of actual services instead of honeypots that could further fool attackers and better reflect the actual
nature of each service, or by completely automating the testing phase and avoiding time wasting on
firewall maintenance. Of course, such an approach would require specific APIs by the vendor.
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On the other hand, future work outlets for the case study should absolutely focus on the completion
of the unfinished project. The first step will be the completion of the previously obtained configuration,
followed by the carrying out of structured deployments to all of Trentino Digitale’s network infrastructure.
In case of significant delays within this process, the configuration will need to be further reviewed and
integrated with fresh data coming from additional, up-to-date honeypot exposures.

Indeed, nowadays the cyber security landscape shifts at an unparalleled pace and new threats and
vulnerabilities are discovered each day. This stands true especially for Trentino Digitale: as an AS
owner and maintainer of a vast and diverse network, the threat of new and incoming attacks is always
around the corner. Therefore, the configuration obtained should be maintained and updated often,
both with the aforementioned methodology and with vendor-specific facilitations. Fortinet, for example,
provides automatic category filter updates for its IPS system, enabling the automated addition of new
signatures from FortiGuard’s database directly into existing policies.

The testing honeypot network, meanwhile, remained in place even after the end of the internship
with the firewall blocking all traffic and the hypervisor turned off. Surprisingly enough, the event
logs show that even after several months the previously used IPs are still attracting random bots and
attacks, at a sustained yet lower pace. This further summarizes the current landscape of cyber threats,
nowadays mainly composed of botnets continuously scanning the whole internet and pinpointing targets
for months and months once they have been tagged as vulnerable.

The aforementioned infrastructure could, in the future, hold an even greater potential. Possible
opportunities could be either the relocation to a permanent location within the enterprise data center,
or a total rebuilding from scratch incorporating more robust software and hardware solutions while
maintaining the current skeleton. This could highly benefit the SOC’s work by providing a more
reliable and stable testing environment.

Long-term wise, the decommissioning of the intermediate firewalls, nowadays considered obsolete
and redundant, can be fundamental within a vision comprising a centralized threat management
platform and streamlining of the network for a quicker detection and disposal of incoming threats.
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Attachment A Honeypot
configuration

This appendix provides code used during the initial configuration of the honeypot machines. All code
sections have been reduced and rearranged, and are not to be intended as paste-ready.

A.1 Network configuration

All virtual machine shared the same network configuration mechanism, used via a netplan config.yaml

file injected into the home folder at installation time. Each machine was assigned an IP in the
192.168.100.x/24 subnet, with DNS servers being set to the 8.8.8.8 DNS servers, maintained by
Google. The choice was entirely arbitrary: eventual substitutions with local or other authoritative
ones should come without consequences.

A.2 TLS certificate generation

For the Apache machine, two different TLS certificates were used: a self-signed one, and one obtained
from Let’s Encrypt, a free Certificate Authority used for automating the provisioning of TLS certificates.

The following code assumes that generation and configuration is made on an Apache machine.
The complete documentation and code can be found on the DigitalOcean website [7] [11] and in the
CertBot one [3].

We start by using an OpenSSL command for generating a self-signed certificate:

bash$ sudo openssl req -x509 -nodes -days 365 -newkey rsa:2048

-keyout /etc/ssl/private/cert.key

-out /etc/ssl/certs/cert.crt

Code A.1: Code for generating a self-signed certificate.

For a Let’s Encrypt one, instead, Certbot must be downloaded and the following code must be
executed:

bash$ sudo add-apt-repository ppa:certbot/certbot

bash$ sudo apt install python-certbot-apache

bash$ certbot certonly --manual --preferred-challenges dns

Code A.2: Let’s Encrypt code for generating a certificate.

At this point, a domain for the TLS certificate will be requested and to confirm, a TXT record will
have to be inserted in the authoritative DNS server for that domain.
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_acme-challenge.dvwalab.sampledomain.it. 300 IN TXT "abcde...1234"

Code A.3: Sample string to be inserted in the DNS authoritative server.

Two .pem files will be obtained, which can either be used as they are or converted in the corre-
sponding .key e .crt extensions with OpenSSL:

bash$ openssl x509 -outform der -in cert.pem -out /etc/ssl/certs/cert.crt

bash$ openssl rsa -in privkey.pem -out /etc/ssl/private/cert.key

Code A.4: OpenSSL code for converting certificates.

Finally, we configure the Apache server using the freshly obtained certificate. The code is available
on the DigitalOcean website [7].

A.3 Software configuration

A.3.1 Cowrie

In addition to the following code snippets, the following steps must be made:

� If an OpenSSH server (highly suggested) or Telnet server is present in the system, it must be
moved to a different, possibly ephemeral and high port, both to let the honeypot work on port
22 and 23 and to avoid accidental intrusions by attackers scanning other ports;

� The cowrie process must be authorized to listen on TCP ports 22 e 23;

� The etc/cowrie.cfg e etc/userdb.txt files must be edited to suit the local network config-
uration: in the case study, Splunk log collection along with Telnet and SSH connections were
enabled for the first file, while a list of common weak credentials pair was inserted in the second.

The complete documentation is available in the GitHub repository [4].

bash$ sudo apt-get install git python-virtualenv libssl-dev libffi-dev

bash$ sudo apt-get install build-essential libpython3-dev

bash$ sudo apt-get install python3-minimal authbind

bash$ sudo adduser --disabled-password cowrie

bash$ sudo su - cowrie # A different user is created

bash$ git clone http://github.com/cowrie/cowrie

bash$ cd cowrie

bash$ virtualenv --python=python3 cowrie-env

bash$ source cowrie-env/bin/activate

bash$ pip install --upgrade pip

bash$ pip install --upgrade -r requirements.txt

bash$ cp etc/cowrie.cfg.dist etc/cowrie.cfg

bash$ cp etc/userdb.example etc/userdb.txt

# System start, must be logged in as user cowrie and within the home folder

bash$ cowrie/bin/cowrie start

Code A.5: Full code for setting up the Cowrie machine.
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A.3.2 DVWA

The complete documentation is available in the GitHub repository [8].

bash$ sudo apt-get -y install apache2 mysql-server php

bash$ sudo apt-get -y install php-mysqli php-gd libapache2-mod-php

bash$ git clone https://github.com/ethicalhack3r/DVWA

bash$ cd DVWA/config/

bash$ cp config.inc.php.dist config.inc.php

bash$ vim config.inc.php

# The following lines must be edited:

vim> $_DVWA[’db_user’] = ’dvwa’;

vim> $_DVWA[’db_password’] = ’SuperSecretPassword99’;

vim> $_DVWA[’db_database’] = ’dvwa’;

bash$ sudo mv DVWA /var/www/html/dvwa

bash$ sudo -i

bash$ mysql -D dvwa

# The following commands must be sent:

mysql> create database dvwa;

mysql> grant all on dvwa.* to dvwa@localhost

mysql> identified by ’SuperSecretPassword99’;

mysql> flush privileges;

bash$ systemctl start mysql

Code A.6: Full code for setting up the DVWA machine.

A.3.3 T-Pot

The T-Pot machine, having been installed from a pre-made customized ISO, did not need particular
modifications during setup and was deployed as is.
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Attachment B Integration test results

This appendix summarizes results for integration tests, carried out in the second testing phase
(section 4.5) of the case study.

All tests were run in an isolated environment with no interfering traffic and packet logging enabled.
Initial IPS and WAF configurations deployed were obtained and refined in the previous testing phases.
The IPS one featured basic protection with 3-star signatures along with HTTP.Request.URI.Directory.

Traversal for directory traversal, HTTP.URI.SQL.Injection for SQL injection, among others. Some
types of signatures, such as the former, appeared to be somewhat overlapping with existing WAF
functionality and were superseded in case of conflicts.

It must be remembered that WAF could be enabled only if proxy mode inspection was too.

B.1 HTTP traffic

With all traffic being unencrypted, deep inspection was not required and enabling it would have yielded
no effect.

IPS Proxy WAF Result

× × — No malevolent traffic is detected.
× ✓ × No malevolent traffic is detected.
× ✓ ✓ SQLi and XSS attacks are detected by the WAF. Navigation is otherwise

regular.
✓ × — All IPS attacks are detected, including some basic SQLi attacks covered by

signatures.
✓ ✓ × All IPS attacks are detected, including some basic SQLi attacks covered by

signatures.
✓ ✓ ✓ Directory traversal attacks and others are detected by the IPS; SQLi and

XSS attacks are detected by the WAF. Navigation is otherwise regular.

B.2 HTTPS traffic without deep inspection

Traffic was tested with both HTTPS and HTTP traffic enabled, with and without redirection, showing
no difference with prior tests.

IPS Proxy WAF Result

× × — No malevolent traffic is detected.
× ✓ × No malevolent traffic is detected.
× ✓ ✓ No malevolent traffic is detected.
✓ × — No malevolent traffic is detected.
✓ ✓ × The protected HTTPS service refuses any connection attempt by

replying with RST packets. HTTP traffic remains unaffected.
✓ ✓ ✓ No malevolent traffic is detected.
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B.3 HTTPS traffic with deep inspection

It must be remembered that deep inspection works only if at least a security profile is enabled, such
as IPS or WAF, that justifies the interruption of the TLS layer. Otherwise, deep inspection will
automatically disable itself.

IPS Proxy WAF Result

× × — No malevolent traffic is detected.
× ✓ × No malevolent traffic is detected.
× ✓ ✓ SQLi and XSS attacks are detected by the WAF. Navigation is otherwise

regular.
✓ × — All IPS attacks are detected, including some basic SQLi attacks covered by

signatures.
✓ ✓ × The protected HTTPS service refuses any connection attempt by

replying with RST packets. HTTP traffic remains unaffected. If the
payload contains IPS-flagged traffic, it is still blocked before it even reaches
the web server.

✓ ✓ ✓ Directory traversal attacks and others are detected by the IPS; SQLi and
XSS attacks are detected by the WAF. Navigation is otherwise regular.
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