
Work-in-Progress: A Sidecar Proxy for Usable and Performance-Adaptable
End-to-End Protection of Communications in Cloud Native Applications

1st Stefano Berlato
Fondazione Bruno Kessler

Trento, Italy
sberlato@fbk.eu

2nd Matteo Rizzi
Fondazione Bruno Kessler

Trento, Italy
mrizzi@fbk.eu

3rd Matteo Franzil
Fondazione Bruno Kessler

Trento, Italy
mfranzil@fbk.eu

4rd Silvio Cretti
Fondazione Bruno Kessler

Trento, Italy
scretti@fbk.eu

5th Pietro De Matteis
Dedagroup SpA

Trento, Italy
pietro.dematteis@dedagroup.it

6th Roberto Carbone
Fondazione Bruno Kessler

Trento, Italy
carbone@fbk.eu

Abstract—The characteristics of cloud native applications —
like the inherent decentralization, the intricate threat model,
and the presence of highly dynamic and interconnected
microservices — bring forth a number of challenges to the
security of the (often sensitive) data exchanged in cloud
native applications. Besides, data security is not absolute,
and its achievement must be mindful of relevant performance
and usability aspects (e.g., minimal overhead, transparency,
automation, interoperability with external services). In this
work-in-progress paper, we discuss the use of Cryptographic
Access Control (CAC) in sidecar proxies as a means to guar-
antee End-to-End (E2E) protection — in terms of confiden-
tiality and integrity — for communications in cloud native
applications, as well as usability and adaptable performance.

1. Introduction

Cloud native applications (or “applications”) are soft-
ware applications developed and operated following the
principles of cloud computing — in particular, scalabil-
ity, automation, and resiliency. Cloud native applications
are usually composed of small, independent, and loosely
coupled microservices that communicate with each other
and with third parties (e.g., end users, external services) to
provide business functions [14]. Communications may be
either internal — that is, occurring within (usually private)
networks among the microservices — or external — that
is, occurring within (usually public) networks with the
third parties. Furthermore, communications may be either
direct (i.e., point-to-point) or indirect (i.e., mediated by a
message broker for, e.g., enhancing modularity) [11].

Intuitively, communications in cloud native applica-
tions should be protected, as per the well-known security-
by-design and zero trust principles [16]. In other words,
cloud native applications often confront a multifaceted
threat landscape in which the level of trust assigned to par-
ticipating parties is inherently limited. Consequently, the
lack of assurances on the confidentiality and integrity of
communications might expose the data contained therein
to a heterogeneous set of threats including external attack-
ers, eavesdroppers (e.g., for communications happening

between different zones or computing regions), malicious
insiders and tenants [10], honest-but-curious public cloud
providers [15], and compromised microservices (which
may share common default security configurations, such
as digital certificates, and thus be capable of listening
to all communications). Besides, when adopted, security
mechanisms typically have a negative impact on perfor-
mance [6]. This impact is exacerbated if applications are
deployed in resource-constrained environments — e.g.,
the Internet of Things (IoT) — or operate in delicate
fields (e.g., eHealth, automotive) offering critical business
functions (e.g., remote monitoring, cooperative vehicle
maneuvering) where quality of service is a key require-
ment. Finally, the decentralized essence of cloud native
applications — whereby often no fully trusted central
party can be relied upon — makes it difficult to provide
privileged access management to data effectively with
traditional centralized security mechanisms [13].

Therefore, in this work-in-progress paper, we discuss
the use of Cryptographic Access Control (CAC) to provide
End-to-End (E2E) protection of communications in cloud
native applications. In brief, CAC consists in employing
cryptography to specify and enforce fine-grained Access
Control (AC) policies over data. In other words, in CAC,
a piece of data (e.g., a network message) is encrypted, and
the permission to access the encrypted data is embodied by
the corresponding cryptographic decrypting key — which
is distributed to authorized agents (e.g., microservices)
only according to an AC policy. Concretely, we consider a
specific implementation of CAC [4] provided by a security
mechanism called CryptoAC and developed as a microser-
vice available as open-source software.1 In the context of
a cloud native application orchestrated with Kubernetes
(K8s), CryptoAC can be used as a sidecar proxy2 automat-
ically injected into each pod.3 In this way, CryptoAC can
guarantee the confidentiality and integrity of data in transit

1. CryptoAC Documentation (https://cryptoac.readthedocs.io/)
2. A sidecar proxy is an additional microservice deployed alongside

business microservices in a pod to provide proxying capabilities
3. A pod is a set of one or more logically-related microservices

deployed together, i.e., on the same node. Notably, all microservices
within a given pod in K8s share the same network stack

https://cryptoac.readthedocs.io/


in both direct and indirect communications. Moreover,
besides automation and ease of deployment, CryptoAC is
completely transparent with respect to the application —
which does not need to be modified. Notably, CryptoAC
can also be distributed externally to cloud native appli-
cations as software for desktops and mobile devices (as
well as servers). Most importantly, different installations
of CryptoAC can be synchronized on the same AC policy,
thus providing interoperability and effectively protecting
both internal and external communications. Finally, as
not all communications may be worth the computational
overhead of cryptography (e.g., according to the sensitivity
of the data), CryptoAC allows for deciding whether to
apply cryptography to communications on a case-by-case
basis — adapting its performance accordingly.

The rest of the paper is structured as follows. In
Section 2 we provide the background, while in Section 3
we give an overview of how CAC (and CryptoAC) would
apply to a real-world cloud native application. We com-
pare CAC (and CryptoAC) with related work in Section 4
and conclude the paper with final remarks and future work
in Section 5.

2. Background on Access Control

AC is a fundamental component of any application [1]
and is defined as the process of mediating every request
to resources managed by an application and determining
whether the request should be granted or denied [17]. AC
expects the presence of an AC policy (or simply “policy”)
declaring what agents (e.g., microservices) can perform
what actions on what resources — where resources are
logical vessels for data (e.g., communication channels).
The AC policy is typically defined by an administrator,
which usually corresponds to the owner of the resources
or the application (e.g., the developers). Finally, the AC
policy is formally represented by an AC model giving
the semantics for granting or denying users’ requests.
The software enforcing a policy based on the chosen AC
model is called AC enforcement mechanism. Role-Based
Access Control (RBAC) [18] is an AC model widely
adopted in both academia and industry [5] — and
also in K8s.4 In RBAC, agents are assigned to roles
which are in turn assigned to permissions (for executing
actions on resources), and agents activate roles to access
permissions. The state of a RBAC policy can be described
as a tuple ⟨U,R,F,UR,PA⟩, where U is the set of
agents, R is the set of roles, F is the set of resources,
UR ⊆ U × R is the set of user-role assignments and
PA ⊆ R×PR is the set of role-permission assignments,
being PR ⊆ F × OP a derivative set of F combined
with a fixed set of actions OP (e.g., Read, Write).
Both OP and PR are not part of the state, as OP
remains constant over time and PR is derivative of F
and OP. An agent u can use a permission ⟨f , op⟩ if
∃r ∈ R | (u, r) ∈ UR ∧ (r , ⟨f , op⟩) ∈ PA.

Cryptographic Access Control. AC enforcement mech-
anisms may be either traditional (i.e., relying on a trusted
central party) — which, however, may not always be

4. Using RBAC Authorization — Kubernetes (https://kubernetes.io/
docs/reference/access-authn-authz/rbac/)

suitable for cloud native applications, as said in Section 1
— or based on CAC, which is ideal for decentralized
applications [3]. Typically, CAC employs symmetric and
asymmetric cryptography to encrypt (data contained in)
resources and distribute the corresponding cryptographic
decrypting keys to authorized agents, respectively. The
use of both symmetric and asymmetric cryptography is
called hybrid cryptography [8]. Authenticated Encryp-
tion with Associated Data (AEAD) [2] (e.g., AES-GCM,
xsalsa20-poly1305) is usually employed for symmetric
cryptography, while different asymmetric cryptosystems
and techniques — like Public Key Infrastructure (PKI) and
Attribute-Based Encryption (ABE) — may be employed.

RBAC policies can be enforced with CAC, as dis-
cussed in, e.g., [8], [4]. As an example, consider the
presence of a resource f (e.g., a communication channel),
a role r , and an agent u . In CAC, r and u are both
equipped with a pair of (asymmetric) public-private keys
(kenc

r ,kdec
r ) and (kenc

u ,kdec
u ) for encryption and de-

cryption, respectively. Now, assume that the administrator
wants to grant u read access over the content fc of f
through r . With this setup, the administrator first generates
a symmetric key ksym

f to encrypt the data fc contained in
f , resulting in {fc}ksym

f
. Then, the administrator encrypts

ksym
f with kenc

r , resulting in {ksym
f }kenc

r
. Afterward,

the administrator encrypts kdec
r with kenc

u , resulting in
{kdec

r }kenc
u

. As shown in Table 1, the state of the resulting
CAC RBAC policy is encoded with (possibly decorated
versions of) the same sets of a traditional RBAC policy.
With such a policy, to access fc, u would:

• decrypt {kdec
r }kenc

u
with kdec

u , obtaining kdec
r ;

• decrypt {ksym
f }kenc

r
with kdec

r , obtaining ksym
f ;

• decrypt {fc}ksym
f

with ksym
f , obtaining fc.

To write on f (e.g., to send a new message fc′ in
the communication channel f ), u uses ksym

f to encrypt
fc′ before transmitting the new message. The entity
storing the CAC RBAC policy state — usually a database
— is called Metadata Manager (MM) [3]. Note that
the CAC encoding for RBAC described above is a
naive encoding provided as an example, and we refer
the interested reader to [8], [4] for the complete encoding.

CryptoAC. CryptoAC5 implements CAC for RBAC as
described in [4], being therefore capable of interacting
and synchronizing policies with traditional RBAC en-
forcement mechanisms (e.g., DynSec6 of the Mosquitto
message broker). In fact, CryptoAC allows for speci-
fying an enforcement type Enf for each resource; the
enforcement type can be either cryptographic (Enfc) or
traditional (Enft) — where the subscripts “c” and “t”
stand for “cryptographic” and “traditional”, respectively
— hence (f ,Enf) ∈ F. Intuitively, CryptoAC applies

5. CryptoAC Documentation (https://cryptoac.readthedocs.io/)
6. DynSec (https://mosquitto.org/documentation/dynamic-security/)

TABLE 1. EXAMPLE CAC RBAC POLICY STATE

Uc = {(u,kenc
u )} Rc = {(r ,kenc

r )} Fc = {(f ,Enfc)}
URc = {(u, r , {kdec

r }kenc
u

)} PAc = {(r , f ,Read, {ksym
f }kenc

r
)}

https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://cryptoac.readthedocs.io/
https://mosquitto.org/documentation/dynamic-security/


pod 2sidecar proxy 2 microservice 2

pod 1
sidecar proxy 1 microservice 1

plaintext
data

c. plaintext data

e. decrypted data

metadata
manager

administrator

a. policy

b. cryptographic
material

d. encrypted
data

Figure 1. Overview of CAC for cloud native applications

cryptography (as previously described) only in the for-
mer case. CryptoAC is open-source, modular, written in
the (multiplatform) Kotlin language,7 and designed as a
microservice distributed in a Docker8 image to guaran-
tee seamless integration with cloud native applications.
Moreover, the multiplatform capability of Kotlin allows
for native and mobile (e.g., Android and IoS) deployments
of CryptoAC. As cryptographic provider, CryptoAC uses
Sodium,9 a modern and portable cryptographic library
whose implementation was thoroughly audited.10

3. Cryptographic Access Control for Cloud
Native Applications

We report in Figure 1 a representation of how CAC can
be used in sidecar proxies for protecting communications
in cloud native applications. In particular, we consider an
application (orchestrated with K8s) composed of two pods
— pod 1 and 2 — containing two microservices — mi-
croservice 1 and 2, respectively — that communicate with
each other. In this context, a sidecar proxy is automatically
injected into each pod as a privileged microservice —
that is, capable of mediating communications incoming
to and outgoing from the pod; the MM (e.g., a Redis data
store11) can be either orchestrated with K8s or offered as
an external service.

First, the AC policy is added to the MM (step a in
Figure 1). The policy may be either defined by an ad-
ministrator or automatically inferred from environmental
variables or similar deployment information — we leave
the analysis of these options as future work. Afterward,
the two sidecar proxies fetch the necessary cryptographic
material from the MM during the initialization of their
pod (step b). Finally, microservice 1 securely communi-
cates with microservice 2: sidecar proxy 1 intercepts and
encrypts the outgoing plaintext data (step c) which are sent
toward pod 2 (step d), while sidecar proxy 2 intercepts and
decrypts the encrypted data — as shown in Section 2 —
and deliver the decrypted data to microservice 2 (step e).

7. Kotlin (https://kotlinlang.org/)
8. Docker (https://www.docker.com/)
9. Sodium (https://libsodium.gitbook.io/doc)
10. Libsodium Audit Results (https://www.privateinternetaccess.com/

blog/libsodium-audit-results/)
11. Redis (https://redis.io/)

3.1. CryptoAC in a Real-World Application

We now discuss the use of CryptoAC in a real-
world cloud native application for Enterprise Resource
Planning (ERP) developed by Dedagroup and linked
to the Co-Innovation Lab CLEANSE12 More in detail,
Dedagroup’s application is aimed at organizations in the
clothing industry and comprises a set of microservices
implementing related business functions (e.g., concerning
supply chain and production, sales, and distribution).
Notably, Dedagroup’s application can integrate with
external services (e.g., warehouse management, billing,
accounting) and interact with end-users directly (e.g.,
through desktops and mobile apps). In other words,
Dedagroup’s application provides a platform built to
connect multiple parties — essentially, clothing brands
and suppliers — while allowing the integration of
external services. To provide modular and flexible
communications, Dedagroup’s application implements an
event-based architecture where events (e.g., concerning
clothing products) are made available to participants
through message queues handled by a common message
broker, Apache Kafka.13 Access to the message queues
is mediated by a RBAC policy — that is, resources
correspond to message queues — which, by default,
identifies three kinds of roles for each brand: employees,
suppliers, and external services.

CryptoAC as Sidecar Proxy in Dedagroup’s
application. To showcase our approach, we provide
a simplified representation of Dedagroup’s application in
Figure 2: we consider two pods with one microservice
each for employees (pod 1) and a supplier (pod 2), a
pod for a different unrelated brand (pod n), a pod for
the message broker, and an external service for billing.
Employees communicate sales data to the billing service
(channel 3), while the supplier communicates tracking
data (e.g., for shipments) to employees (channel 1) and
invoice data to both employees and the billing service
(channel 2). While sales and invoice data are deemed
sensitive (i.e., Enfc), tracking data are not (i.e., Enft).

12. Co-Innovation Lab — Deda Group (https://www.deda.group/deda/
innovazione/co-innovation-lab)

13. Apache Kafka (https://kafka.apache.org/)

TABLE 2. CAC RBAC POLICY STATE IN DEDAGROUP’S
APPLICATION∗

Uc = {(m1 ,kenc
m1

), (m2 ,kenc
m2

), (mn ,kenc
mn

), (es,kenc
es )}

Rc = {(e,kenc
e ), (s,kenc

s ), (ob,kenc
ob ), (b,kenc

b )}
Fc = {(c1 ,Enft), (c2 ,Enfc), (c3 ,Enfc)}

URc =
{(m1 , e, {kdec

e }kenc
m1

), (m2 , s, {kdec
s }kenc

m2
), (mn , ob,

{kdec
ob }kenc

mn
), (es, b, {kdec

b }kenc
es

)}

PAc =

{(s, c1 ,Write,−), (e, c1 ,Read,−), (s, c2 ,Write,
{ksym

c2 }kenc
s

), (e, c2 ,Read, {ksym
c2 }kenc

e
), (b, c2 ,

Read, {ksym
c2 }kenc

b
), (e, c3 ,Write, {ksym

c3 }kenc
e

), (b,

c3 ,Read, {ksym
c3 }kenc

b
)}

∗Users: m stands for microservice, es for external service. Roles: e stands
for employees, s for supplier, ob for other brand, b for billing. Resources:
c stands for channel; “-” represents an empty value.

https://kotlinlang.org/
https://www.docker.com/
https://libsodium.gitbook.io/doc
https://www.privateinternetaccess.com/blog/libsodium-audit-results/
https://www.privateinternetaccess.com/blog/libsodium-audit-results/
https://redis.io/
https://www.deda.group/deda/innovazione/co-innovation-lab
https://www.deda.group/deda/innovazione/co-innovation-lab
https://kafka.apache.org/


invoice

microservice 1
pod 1 - employees CryptoAC 

proxy 1

sales data

...

external
CryptoAC

metadata
manager

decrypted sales

cryptographic
material

channel 1 - tracking data

cloud native application

policy

pod*

message brokerencrypted sales data

administrator
cryptographic

material

microservice 2
pod 2 - supplier CryptoAC 

proxy 2

tracking

microservice n
pod n - other brand CryptoAC 

proxy n

still encrypted
data

channel 2 - invoice data
channel 3 - sales data

encrypted invoice data

data data

plaintext tracking data
data

decrypted invoice
data

external service - billing

*capture

*the message broker may even be provided as an external service and not be part of the cloud native application

w
rit

e
re

ad
re

ad

Figure 2. Our approach applied to Dedagroup’s application

With these considerations, the state of the resulting CAC
RBAC policy would be as shown in Table 2.

Discussion. As shown in Figure 2 CryptoAC automati-
cally encrypts and decrypts data in transit in Dedagroup’s
application according to the CAC RBAC policy, providing
true E2E protection. In particular, only microservices 1
and 2 and the external service for billing can read the
content of the messages exchanged over channel 2, while
all other parties (e.g., the message broker and microservice
n) cannot. We highlight that, even if the CryptoAC proxy
n is able somehow to capture messages exchanged over
channel 2 (e.g., by sniffing network traffic or colluding
with the message broker), it cannot possibly decrypt them
since it lacks the necessary cryptographic material, as
shown in Table 2 and described in Section 2. Similarly,
only microservice 1 and the external service for billing
can read the content of the messages exchanged over
channel 3, while messages exchanged over channel 1 —
which do not contain sensitive data — are not encrypted,
avoiding unnecessary cryptographic computations, reliev-
ing overhead, and improving performance. We remark that
the injection of CryptoAC is automatic and transparent to
the microservices of Dedagroup’s application. Moreover,
if the application scales, new instances of CryptoAC are
created with each new pod and configured during the ini-
tialization of the pod according to the AC policy. Finally,
CryptoAC is not limited to K8s and can easily interoperate
with external services.

4. Related Work

The problem of securing data in transit in cloud native
applications has been tackled by several researchers and
practitioners, resulting in a rich ecosystem of security
mechanisms providing excellent solutions to this problem
— e.g., see the Cloud Native Computing Foundation
(CNCF).14 One of the most commonly adopted techno-
logical patterns among these security mechanisms is the

14. Cloud Native Computing Foundation (https://www.cncf.io/)

service mesh [12]. In essence, a service mesh allows
for controlling how different services — where a ser-
vice usually corresponds to a microservice or a set of
logically related microservices (e.g., a pod) — in cloud
native applications exchange data by abstracting the logic
governing service-to-service communication. Typically, a
service mesh expects a (network) proxy running as a side-
car alongside each service. Besides guaranteeing security,
a service mesh allows for gathering performance metrics
(to, e.g., optimize communication) and collecting logs
and analytics (to, e.g., provide observability). The proxies
operate in the data plane — that is, at the same level
where data of cloud native applications transit — and are
managed by a control plane, which does not handle data
but instead acts as a (usually single and centralized) source
of truth for the configuration of the proxies.

Below, we compare CryptoAC with 4 popular
security mechanisms for service mesh, i.e., Kuma,15

Istio,16 Consul,17 and Linkerd,18 reporting the results of
the comparison in Table 3 — in the table, we consider
those aspects already elicited in Section 3. Kuma, Istio,
and Consul consist of control planes for service mesh
using Envoy19 as sidecar proxy, while Linkerd consists of
a control plane for service mesh using an ad-hoc sidecar
proxy named Linkerd2-proxy.20 We choose Istio, Linkerd,
and Consul as they are the most widely adopted security
mechanisms for service mesh according to the CNCF21

— we exclude Traefik22 (which does not use sidecars
proxies), AWS App Mesh23 (which is not open source),

15. Kuma (https://kuma.io/)
16. Istio (https://istio.io/)
17. HashiCorp Consul (https://www.consul.io/)
18. Linkerd (https://linkerd.io/)
19. Envoy proxy (https://www.envoyproxy.io/)
20. Why Linkerd doesn’t use Envoy (https://linkerd.io/2020/12/03/

why-linkerd-doesnt-use-envoy/index.html)
21. Service meshes are on the rise – but greater understanding and

experience are required — CNCF (https://www.cncf.io/blog/2022/05/17/
service-meshes-are-on-the-rise-but-greater-understanding-and-experience
-are-required/)

22. Traefik (https://traefik.io/traefik/)
23. AWS App Mesh (https://aws.amazon.com/app-mesh/)

https://www.cncf.io/
https://kuma.io/
https://istio.io/
https://www.consul.io/
https://linkerd.io/
https://www.envoyproxy.io/
https://linkerd.io/2020/12/03/why-linkerd-doesnt-use-envoy/index.html
https://linkerd.io/2020/12/03/why-linkerd-doesnt-use-envoy/index.html
https://www.cncf.io/blog/2022/05/17/service-meshes-are-on-the-rise-but-greater-understanding-and-experience
https://www.cncf.io/blog/2022/05/17/service-meshes-are-on-the-rise-but-greater-understanding-and-experience
-are-required/
https://traefik.io/traefik/
https://aws.amazon.com/app-mesh/


and Open Service Mesh24 (which has been archived
by the CNCF). Moreover, we consider Kuma since it
is an emerging and interesting CNCF sandbox project
developed for multi-cloud and universal environments.

Point-to-point protection. That is, the confidentiality
and integrity of network messages are guaranteed
point-to-point (i.e., direct communication, as described
in Section 1). Kuma, Istio, Consul, and Linkerd provide
such protection with mutual TLS, whereas CryptoAC
provides such protection with CAC (see Section 3).

E2E protection. That is, the confidentiality and
integrity of network messages are guaranteed end-
to-end (i.e., indirect communication, as described in
Section 1). Unlike CAC, TLS cannot protect network
messages against honest-but-curious agents mediating
communication at the application level (e.g., like the
message broker in Section 3.1), as also argued in [19],
[4]. Therefore, security mechanisms relying on TLS for
protecting communications (like Kuma, Istio, Consul,
and Linkerd) are intrinsically incapable of providing true
E2E protection.

Dynamic fine-grained AC. That is, it is possible to
specify, enforce, and dynamically modify fine-grained
AC policies over resources. Kuma allows for defining
(dynamic but coarse-grained) AC policies over network
communication based on source and destination services
only.25 Linkerd follows an analogous approach,26 and
Consul uses AC lists associating one or more policies
with a token which is then distributed among authorized
services.27 Istio, instead, considers further aspects such
as namespaces, ports, (HTTP) methods, and conditions
specified over additional attributes, hence allowing for
specifying and enforcing fine-grained AC policies.28

Not limited to K8s. That is, whether the use of the
security mechanism is limited to K8s. Similarly to
CryptoAC (see Section 3), Kuma can run in cloud
native applications orchestrated with K8s but also in
generic applications via the universal Kuma Application
Programming Interface (API) server and Kuma resources

24. Open Service Mesh (https://openservicemesh.io/)
25. General notes about Kuma policies (https://kuma.io/docs/2.6.x/

policies/general-notes-about-kuma-policies/)
26. Authorization Policy — Linkerd (https://linkerd.io/2.15/features/

server-policy/)
27. Access Control List (ACL) - Overview — Consul — HashiCorp

Developer (https://developer.hashicorp.com/consul/docs/security/acl)
28. Istio / Authorization Policy (https://istio.io/latest/docs/reference/

config/security/authorization-policy/)

TABLE 3. COMPARISON OF CRYPTOAC WITH SECURITY
MECHANISMS FOR SERVICE MESH

Security MechanismCriterion Kuma Istio Consul Linkerd CryptoAC
point-to-point protection
end-to-end protection
dynamic fine-grained AC
not limited to K8s
interoperability
adaptable performance

— hosted in a dedicated PostgreSQL database acting
as MM (similarly to the MM described in Section 3).29

Instead, Istio is design primarily for K8s, even though
some of its security features can be used in generic
applications.30 Finally, Consul31 and Linkerd32 allows for
connecting external services to their service mesh within
K8s, although following a not always straightforward
process and often requiring the installation of additional
software (e.g., SPIRE for Linkerd) and Docker support.

Interoperability. That is, whether different deployments
of the security mechanism (e.g., in different K8s clusters
or environments) can interoperate with each other. Kuma
supports different deployment modes (e.g., multi-zone,
multi-tenancy, multi-cloud),33 similarly to the cross-
cluster interoperability feature of Istio,34 Linkerd,35 and
Consul.36 As shown in Section 3, CryptoAC is natively
interoperable, potentially even with end-users’ devices.

Adaptable performance. That is, it is possible to
decide what resources to encrypt and what resources not
to encrypt to relieve the cryptographic computational
overhead. Istio and Linkerd partially support this
possibility by allowing for, respectively, deciding whether
to use TLS between pairs of services37 and specifying for
what ports bypass the proxy,38 while Kuma and Consul
seemingly encrypt all communication.

To summarize, as shown in Table 3, the use of CAC
in cloud native applications allows for higher security
— in particular, true E2E protection and enforcement
of fine-grained AC policies in a distributed fashion —
adaptable performance and easy interoperability with ex-
ternal services. Nevertheless, we acknowledge and remark
that Kuma, Istio, Consul, and Linkerd are widely popular
and mature security mechanisms for service mesh still
capable of enhancing the security of data in transit in cloud
native applications while providing a large number of
advanced features (especially for what concerns network
observability, optimization, and load balancing) which we
do not discuss here. In this sense, CAC could even be
integrated with security mechanisms for service mesh and
K8s, e.g., as a standalone sidecar proxy or plugin for
Envoy.

29. Architecture — Kuma (https://kuma.io/docs/2.6.x/introduction/
architecture/)

30. Istio / Deployment Models (https://istio.io/latest/docs/ops/
deployment/deployment-models/)

31. External Services to Consul (https://developer.hashicorp.com/
consul/docs/k8s/deployment-configurations/clients-outside-kubernetes)

32. Adding non-Kubernetes workloads to your mesh — Linkerd
(https://linkerd.io/2.15/tasks/adding-non-kubernetes-workloads/)

33. Multi-zone deployment — Kuma (https://kuma.io/docs/2.6.x/
production/deployment/multi-zone/)

34. Istio / Multi-cluster Traffic Management (https://istio.io/latest/
docs/ops/configuration/traffic-management/multicluster/)

35. Multi-cluster communication — Linkerd (https://linkerd.io/2.15/
features/multicluster/)

36. Consul Across Multiple Clusters (https://developer.hashicorp.com/
consul/docs/k8s/deployment-configurations/single-dc-multi-k8s)

37. Istio / Understanding TLS Configuration (https://istio.io/latest/
docs/ops/configuration/traffic-management/tls-configuration/)

38. Proxy Configuration — Linkerd (https://linkerd.io/2.15/reference/
proxy-configuration/)

https://openservicemesh.io/
https://kuma.io/docs/2.6.x/policies/general-notes-about-kuma-policies/
https://kuma.io/docs/2.6.x/policies/general-notes-about-kuma-policies/
https://linkerd.io/2.15/features/server-policy/
https://linkerd.io/2.15/features/server-policy/
https://developer.hashicorp.com/consul/docs/security/acl
https://istio.io/latest/docs/reference/config/security/authorization-policy/
https://istio.io/latest/docs/reference/config/security/authorization-policy/
https://kuma.io/docs/2.6.x/introduction/architecture/
https://kuma.io/docs/2.6.x/introduction/architecture/
https://istio.io/latest/docs/ops/deployment/deployment-models/
https://istio.io/latest/docs/ops/deployment/deployment-models/
https://developer.hashicorp.com/consul/docs/k8s/deployment-configurations/clients-outside-kubernetes
https://developer.hashicorp.com/consul/docs/k8s/deployment-configurations/clients-outside-kubernetes
https://linkerd.io/2.15/tasks/adding-non-kubernetes-workloads/
https://kuma.io/docs/2.6.x/production/deployment/multi-zone/
https://kuma.io/docs/2.6.x/production/deployment/multi-zone/
https://istio.io/latest/docs/ops/configuration/traffic-management/multicluster/
https://istio.io/latest/docs/ops/configuration/traffic-management/multicluster/
https://linkerd.io/2.15/features/multicluster/
https://linkerd.io/2.15/features/multicluster/
https://developer.hashicorp.com/consul/docs/k8s/deployment-configurations/single-dc-multi-k8s
https://developer.hashicorp.com/consul/docs/k8s/deployment-configurations/single-dc-multi-k8s
https://istio.io/latest/docs/ops/configuration/traffic-management/tls-configuration/
https://istio.io/latest/docs/ops/configuration/traffic-management/tls-configuration/
https://linkerd.io/2.15/reference/proxy-configuration/
https://linkerd.io/2.15/reference/proxy-configuration/


5. Conclusion

In this work-in-progress paper, we proposed and
discussed the use of CAC for the E2E protection
of communications in cloud native applications. As
presented in Section 3, the use of CryptoAC — a security
mechanism implementing CAC — as a sidecar proxy
would provide E2E protection, transparency, adaptable
performance, and interoperability with external services
in cloud native applications.

Future Work. Besides an engineering effort toward a con-
crete deployment of CryptoAC in a real-world cloud native
application (to, e.g., experimentally evaluate and collect
performance metrics like latency, packet size overhead,
scalability, and throughput), we can identify a number of
compelling research directions stemming from our pro-
posal of using CAC in cloud native applications. First,
CAC is often used to protect data when at rest, e.g., stored
in a database hosted in the cloud [8], [4]. In this context,
it would be interesting to design a security mechanism
employing CAC to guarantee the confidentiality and in-
tegrity of data in cloud native applications when both
in transit and at rest, thus achieving a higher level of
protection. Intuitively, data may also need to be protected
when in use (i.e., when being processed). To provide truly
comprehensive protection, we note that CAC can arguably
be integrated with already existing cryptographic-based
solutions to protect the confidentiality of data in use and
the processing itself, such as homomorphic encryption
and functional encryption [9]. For instance, data may
be encrypted with functional encryption, and the secret
keys allowing to compute functions over the encrypted
data (i.e., the secret functional encryption keys) may be
distributed through CAC. Then, as mentioned in Section 3,
AC policies could be automatically inferred from, e.g.,
deployment information or behavioral models — detailing
the interactions among a set of microservices — derived
from logs and event traces through process mining [7].
Finally, to further adapt performance, it may be interesting
to investigate a context-aware methodology capable of
evaluating the importance and sensibility of a piece of
data (e.g., a network message) on the fly and accordingly
decide the most appropriate security mechanism (e.g.,
whether to protect that data with CAC).

Acknowledgements

This work was partially supported by project SERICS
(PE00000014) under the MUR National Recovery and
Resilience Plan funded by the European Union - NextGen-
erationEU.

References

[1] Yosef Ashibani and Qusay H. Mahmoud. Cyber physical systems
security: Analysis, challenges and solutions. Computers & Secu-
rity, 68:81–97, 2017.

[2] Mihir Bellare and Chanathip Namprempre. Authenticated en-
cryption: Relations among notions and analysis of the generic
composition paradigm. Journal of Cryptology, 21(4):469–491,
2008.

[3] Stefano Berlato, Roberto Carbone, Adam J. Lee, and Silvio Ranise.
Formal modelling and automated trade-off analysis of enforcement
architectures for cryptographic access control in the cloud. ACM
Trans. Priv. Secur., 25(1), nov 2021.

[4] Stefano Berlato, Umberto Morelli, Roberto Carbone, and Silvio
Ranise. End-to-end protection of IoT communications through
cryptographic enforcement of access control policies. In Shamik
Sural and Haibing Lu, editors, Data and Applications Security and
Privacy XXXVI, volume 13383, pages 236–255. Springer Interna-
tional Publishing, 2022. Series Title: Lecture Notes in Computer
Science.

[5] Fangbo Cai, Nafei Zhu, Jingsha He, Pengyu Mu, Wenxin Li, and
Yi Yu. Survey of access control models and technologies for cloud
computing. Cluster Computing, 22:6111–6122, 2019.

[6] Marco Centenaro, Stefano Berlato, Roberto Carbone, Gianfranco
Burzio, Giuseppe Faranda Cordella, Roberto Riggio, and Silvio
Ranise. Safety-related cooperative, connected, and automated
mobility services: Interplay between functional and security re-
quirements. IEEE Vehicular Technology Magazine, 16(4):78–88,
2021.

[7] Luca Compagna, Daniel Ricardo Dos Santos, Serena Elisa Ponta,
and Silvio Ranise. Aegis: Automatic enforcement of security
policies in workflow-driven web applications. In Proceedings of
the Seventh ACM on Conference on Data and Application Security
and Privacy, pages 321–328. ACM, 2017.

[8] William C. Garrison, Adam Shull, Steven Myers, and Adam J. Lee.
On the practicality of cryptographically enforcing dynamic access
control policies in the cloud. In 2016 IEEE Symposium on Security
and Privacy (SP), pages 819–838. IEEE, 2016. event-place: San
Jose, CA.

[9] Christian Gottel, Rafael Pires, Isabelly Rocha, Sebastien Vaucher,
Pascal Felber, Marcelo Pasin, and Valerio Schiavoni. Security,
performance and energy trade-offs of hardware-assisted memory
protection mechanisms. In 2018 IEEE 37th Symposium on Reliable
Distributed Systems (SRDS), pages 133–142. IEEE, 2018.

[10] Abdelhakim Hannousse and Salima Yahiouche. Securing microser-
vices and microservice architectures: A systematic mapping study.
Computer Science Review, 41:100415, 2021.

[11] Isil Karabey Aksakalli, Turgay Celik, Ahmet Burak Can, and
Bedir Tekinerdogan. Deployment and communication patterns in
microservice architectures: A systematic literature review. Journal
of Systems and Software, 180:111014, 2021.

[12] Wubin Li, Yves Lemieux, Jing Gao, Zhuofeng Zhao, and Yanbo
Han. Service mesh: Challenges, state of the art, and future research
opportunities. In 2019 IEEE International Conference on Service-
Oriented System Engineering (SOSE), pages 122–1225. IEEE,
2019.

[13] Theo Lynn, John G. Mooney, Brian Lee, and Patricia Takako Endo.
The cloud-to-thing continuum: Opportunities and challenges in
cloud, fog and edge computing. In The Cloud-to-Thing Continuum,
Palgrave Studies in Digital Business & Enabling Technologies.
Springer International Publishing, 2020.

[14] Anelis Pereira-Vale, Eduardo B. Fernandez, Raúl Monge, Hernán
Astudillo, and Gastón Márquez. Security in microservice-based
systems: A multivocal literature review. Computers & Security,
103:102200, 2021.

[15] E. Ramirez, J. Brill, M.K. Ohlhausen, J.D. Wright, and T. Mc-
Sweeny. Data brokers: A call for transparency and accountabil-
ity. In Data brokers: A call for transparency and accountability,
pages 1–101. CreateSpace Independent Publishing Platform, Jan-
uary 2014.

[16] Scott Rose, Oliver Borchert, Stu Mitchell, and Sean Connelly. Zero
trust architecture, 2020.

[17] Pierangela Samarati and Sabrina de Capitani di Vimercati. Access
control: Policies, models, and mechanisms. In Riccardo Focardi
and Roberto Gorrieri, editors, Foundations of Security Analysis and
Design, volume 2171, pages 137–196. Springer Berlin Heidelberg,
2000.

[18] Ravi Sandhu. Access control: principle and practice. Advances in
Computers, 46:237 – 286, 10 1998.

[19] Carlos Segarra, Ricard Delgado-Gonzalo, and Valerio Schiavoni.
MQT-TZ: Hardening IoT brokers using ARM TrustZone : (prac-
tical experience report). In 2020 International Symposium on
Reliable Distributed Systems (SRDS), pages 256–265. IEEE, 2020.


	Introduction
	Background on Access Control
	Cryptographic Access Control for Cloud Native Applications
	CryptoAC in a Real-World Application

	Related Work
	Conclusion
	References

